数学分析:L‘Hospital 法则

数学分析笔记——总目录

L’Hospital 法则

函数极限中的待定型

\quad 接下来,我们只讨论如何使用 L’Hospital 法则处理 0 0 \frac{0}{0} 00 型待定型以及 ∗ ∞ \frac{*}{\infty} 型待定型。其他形式的待定型均可通过适当的变换转换为这两种形式。

\quad 事实上,在函数极限中,

  • 自变量有 6 6 6 种趋近方式: x → x 0 x \rightarrow x_0 xx0 x → x 0 + x \rightarrow x_0+ xx0+ x → x 0 − x \rightarrow x_0- xx0 x → ∞ x \rightarrow \infty x x → + ∞ x \rightarrow +\infty x+ 以及 x → − ∞ x \rightarrow -\infty x
  • 因变量有 4 4 4 种趋近方式: f ( x ) → A ( A ∈ R ) f(x) \rightarrow A(A \in \mathbb{R}) f(x)A(AR) f ( x ) → ∞ f(x) \rightarrow \infty f(x) f ( x ) → + ∞ f(x) \rightarrow +\infty f(x)+ f ( x ) → − ∞ f(x) \rightarrow -\infty f(x)

再者,L’Hospital 法则分别处理以下两种形式:

  1. 0 0 \frac{0}{0} 00 型待定型;
  2. ∗ ∞ \frac{*}{\infty} 型待定型。

如此一来,需要证明 48 48 48 种不同的情形。

处理 0 0 \frac{0}{0} 00 型的 L’Hospital 法则


定理 1(L’Hospital法则):设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) ( x 0 , x 0 + ρ ) (x_0,x_0+\rho) (x0,x0+ρ) 上可导( ρ > 0 \rho>0 ρ>0),若满足:

  1. lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 + g ( x ) = 0 \underset{x \rightarrow x_0+}{\lim}f(x)=\underset{x \rightarrow x_0+}{\lim}g(x)=0 xx0+limf(x)=xx0+limg(x)=0;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xx0+limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → x 0 + f ( x ) g ( x ) = lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow x_0+}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=A. xx0+limg(x)f(x)=xx0+limg(x)f(x)=A.


证明:

\quad 由于趋于一点的极限与在该点处的函数值没有关系,因此可补充定义
f ( x 0 ) = g ( x 0 ) = 0. f(x_0)=g(x_0)=0. f(x0)=g(x0)=0.
此时, f ( x ) f(x) f(x) g ( x ) g(x) g(x) 均在点 x 0 x_0 x0 右连续。

\quad 任取 x ∈ ( x 0 , x 0 + ρ ) x \in (x_0,x_0+\rho) x(x0,x0+ρ),则在区间 [ x 0 , x ] [x_0,x] [x0,x] 上应用 Cauchy中值定理,存在 ξ ∈ ( x 0 , x ) \xi \in (x_0,x) ξ(x0,x),使得
f ( x ) g ( x ) = f ( x ) − 0 g ( x ) − 0 = f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ′ ( ξ ) g ′ ( ξ ) . \frac{f(x)}{g(x)}=\frac{f(x)-0}{g(x)-0}=\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f'(\xi)}{g'(\xi)}. g(x)f(x)=g(x)0f(x)0=g(x)g(x0)f(x)f(x0)=g(ξ)f(ξ).
\quad x → x 0 + x\rightarrow x_0+ xx0+ 时,显然有 ξ → x 0 + \xi \rightarrow x_0+ ξx0+,于是
lim ⁡ x → x 0 − f ( x ) g ( x ) = lim ⁡ ξ → x 0 + f ′ ( ξ ) g ′ ( ξ ) = ξ 换符号 x lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A . \underset{x\rightarrow x_0-}{\lim}\frac{f(x)}{g(x)}=\underset{\xi \rightarrow x_0+}{\lim}\frac{f'(\xi)}{g'(\xi)}\xlongequal{\xi \quad \text{换符号}\quad x}\underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=A. xx0limg(x)f(x)=ξx0+limg(ξ)f(ξ)ξ换符号x xx0+limg(x)f(x)=A.
\quad 该证明适用 A A A 为有限数、 ± ∞ \pm\infty ± 的所有情形。综上,定理得证。

证毕

定理 2(L’Hospital法则):设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) ( x 0 − ρ , x 0 ) (x_0-\rho,x_0) (x0ρ,x0) 上可导( ρ > 0 \rho>0 ρ>0),若满足:

  1. lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 − g ( x ) = 0 \underset{x \rightarrow x_0-}{\lim}f(x)=\underset{x \rightarrow x_0-}{\lim}g(x)=0 xx0limf(x)=xx0limg(x)=0;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → x 0 − f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow x_0-}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xx0limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → x 0 − f ( x ) g ( x ) = lim ⁡ x → x 0 − f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow x_0-}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow x_0-}{\lim}\frac{f'(x)}{g'(x)}=A. xx0limg(x)f(x)=xx0limg(x)f(x)=A.


证明:

\quad ​与 定理 1 的证明方式完全相同。由于函数趋于一点的极限与在该点处的函数值没有关系,因此可补充定义
f ( x 0 ) = g ( x 0 ) = 0. f(x_0)=g(x_0)=0. f(x0)=g(x0)=0.
此时, f ( x ) f(x) f(x) g ( x ) g(x) g(x) 均在点 x 0 x_0 x0 右连续。

\quad 任取 x ∈ ( x 0 − ρ , x 0 ) x \in (x_0-\rho,x_0) x(x0ρ,x0),则在区间 [ x , x 0 ] [x,x_0] [x,x0] 上应用 Cauchy中值定理,存在 ξ ∈ ( x , x 0 ) \xi \in (x,x_0) ξ(x,x0),使得
f ( x ) g ( x ) = f ( x ) − 0 g ( x ) − 0 = f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ′ ( ξ ) g ′ ( ξ ) . \frac{f(x)}{g(x)}=\frac{f(x)-0}{g(x)-0}=\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f'(\xi)}{g'(\xi)}. g(x)f(x)=g(x)0f(x)0=g(x)g(x0)f(x)f(x0)=g(ξ)f(ξ).
\quad x → x 0 − x\rightarrow x_0- xx0 时,显然有 ξ → x 0 − \xi \rightarrow x_0- ξx0,于是
lim ⁡ x → x 0 − f ( x ) g ( x ) = lim ⁡ ξ → x 0 − f ′ ( ξ ) g ′ ( ξ ) = ξ 换符号 x lim ⁡ x → x 0 − f ′ ( x ) g ′ ( x ) = A . \underset{x\rightarrow x_0-}{\lim}\frac{f(x)}{g(x)}=\underset{\xi \rightarrow x_0-}{\lim}\frac{f'(\xi)}{g'(\xi)}\xlongequal{\xi \quad \text{换符号}\quad x}\underset{x \rightarrow x_0-}{\lim}\frac{f'(x)}{g'(x)}=A. xx0limg(x)f(x)=ξx0limg(ξ)f(ξ)ξ换符号x xx0limg(x)f(x)=A.

证毕

\quad 作为 定理 1定理 2 的综合,有下面 定理 3


定理 3(L’Hospital法则):设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在点 x 0 x_0 x0 的某个邻域 O ( x 0 , ρ ) O(x_0,\rho) O(x0,ρ) 上可导( ρ > 0 \rho>0 ρ>0),若满足:

  1. lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = 0 \underset{x \rightarrow x_0}{\lim}f(x)=\underset{x \rightarrow x_0}{\lim}g(x)=0 xx0limf(x)=xx0limg(x)=0;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow x_0}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xx0limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow x_0}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow x_0}{\lim}\frac{f'(x)}{g'(x)}=A. xx0limg(x)f(x)=xx0limg(x)f(x)=A.


证明:

\quad 由于函数趋于一点的极限与在该点处的函数值没有关系,因此可补充定义
f ( x 0 ) = g ( x 0 ) = 0. f(x_0)=g(x_0)=0. f(x0)=g(x0)=0.
此时, f ( x ) f(x) f(x) g ( x ) g(x) g(x) 均在点 x 0 x_0 x0 右连续。

\quad 任取 x ∈ O ( x 0 , ρ ) x \in O(x_0,\rho) xO(x0,ρ),则在区间 [ x , x 0 ] [x,x_0] [x,x0] (或 [ x 0 , x ] [x_0,x] [x0,x])上应用 Cauchy中值定理,存在 ξ ∈ ( x , x 0 ) \xi \in (x,x_0) ξ(x,x0),使得
f ( x ) g ( x ) = f ( x ) − 0 g ( x ) − 0 = f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ′ ( ξ ) g ′ ( ξ ) . \frac{f(x)}{g(x)}=\frac{f(x)-0}{g(x)-0}=\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f'(\xi)}{g'(\xi)}. g(x)f(x)=g(x)0f(x)0=g(x)g(x0)f(x)f(x0)=g(ξ)f(ξ).
\quad x → x 0 x\rightarrow x_0 xx0 时,显然有 ξ → x 0 \xi \rightarrow x_0 ξx0,于是
lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ ξ → x 0 f ′ ( ξ ) g ′ ( ξ ) = ξ 换符号 x lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A . \underset{x\rightarrow x_0}{\lim}\frac{f(x)}{g(x)}=\underset{\xi \rightarrow x_0}{\lim}\frac{f'(\xi)}{g'(\xi)}\xlongequal{\xi \quad \text{换符号}\quad x}\underset{x \rightarrow x_0}{\lim}\frac{f'(x)}{g'(x)}=A. xx0limg(x)f(x)=ξx0limg(ξ)f(ξ)ξ换符号x xx0limg(x)f(x)=A.

证毕


定理 4(L’Hospital):设函数 f ( a ) f(a) f(a) g ( x ) g(x) g(x) [ a , + ∞ ) [a,+\infty) [a,+) 上可导,若满足:

  1. lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → + ∞ g ( x ) = 0 \underset{x \rightarrow +\infty}{\lim}f(x)=\underset{x \rightarrow +\infty}{\lim}g(x)=0 x+limf(x)=x+limg(x)=0
  2. g ′ ( x ) ≠ 0 g'(x)\ne 0 g(x)=0
  3. lim ⁡ x → + ∞ f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow +\infty}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) x+limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → + ∞ f ( x ) g ( x ) = lim ⁡ x → + ∞ f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow +\infty}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow +\infty}{\lim}\frac{f'(x)}{g'(x)}=A. x+limg(x)f(x)=x+limg(x)f(x)=A.


证明:

\quad x = 1 t x=\frac{1}{t} x=t1,则 F ( t ) = f ( x ) = f ( 1 t ) F(t)=f(x)=f(\frac{1}{t}) F(t)=f(x)=f(t1) G ( t ) = g ( x ) = g ( 1 t ) G(t)=g(x)=g(\frac{1}{t}) G(t)=g(x)=g(t1), 当 x → + ∞ x \rightarrow +\infty x+ 时, t → 0 + t \rightarrow 0+ t0+

\quad 此时,定理条件变为
lim ⁡ t → 0 + F ( t ) = lim ⁡ t → 0 + G ( t ) = 0 , F ′ ( t ) = − 1 t 2 ⋅ f ′ ( 1 t ) , G ′ ( t ) = − 1 t 2 ⋅ g ′ ( 1 t ) ≠ 0 , \underset{t \rightarrow 0+}{\lim}F(t)=\underset{t \rightarrow 0+}{\lim}G(t)=0,\quad F'(t)=-\frac{1}{t^2}\cdot f'(\frac{1}{t}),\quad G'(t)=-\frac{1}{t^2}\cdot g'(\frac{1}{t})\ne0,\quad t0+limF(t)=t0+limG(t)=0,F(t)=t21f(t1),G(t)=t21g(t1)=0,
以及
lim ⁡ t → 0 + F ′ ( t ) G ′ ( t ) = lim ⁡ t → 0 + − 1 t 2 ⋅ f ′ ( 1 t ) − 1 t 2 ⋅ g ′ ( 1 t ) = A ( A 为 有 限 数 , 或 ± ∞ ) . \underset{t \rightarrow 0+}{\lim}\frac{F'(t)}{G'(t)}=\underset{t \rightarrow 0+}{\lim}\frac{-\frac{1}{t^2}\cdot f'(\frac{1}{t})}{-\frac{1}{t^2}\cdot g'(\frac{1}{t})}=A\quad(A为有限数,或\pm\infty). t0+limG(t)F(t)=t0+limt21g(t1)t21f(t1)=A(A±).
于是,由 定理1 知,
lim ⁡ x → + ∞ f ( x ) g ( x ) = lim ⁡ t → 0 + F ( t ) G ( t ) = A . \underset{x \rightarrow +\infty}{\lim}\frac{f(x)}{g(x)}=\underset{t \rightarrow 0+}{\lim}\frac{F(t)}{G(t)}=A. x+limg(x)f(x)=t0+limG(t)F(t)=A.

证毕

证毕


定理 5(L’Hospital):设函数 f ( a ) f(a) f(a) g ( x ) g(x) g(x) ( − ∞ , a ] (-\infty,a] (,a] 上可导,若满足:

  1. lim ⁡ x → − ∞ f ( x ) = lim ⁡ x → − ∞ g ( x ) = 0 \underset{x \rightarrow -\infty}{\lim}f(x)=\underset{x \rightarrow -\infty}{\lim}g(x)=0 xlimf(x)=xlimg(x)=0
  2. g ′ ( x ) ≠ 0 g'(x)\ne 0 g(x)=0
  3. lim ⁡ x → − ∞ f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow -\infty}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xlimg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → − ∞ f ( x ) g ( x ) = lim ⁡ x → − ∞ f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow -\infty}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow -\infty}{\lim}\frac{f'(x)}{g'(x)}=A. xlimg(x)f(x)=xlimg(x)f(x)=A.


证明:

\quad x = 1 t x=\frac{1}{t} x=t1,则 F ( t ) = f ( x ) = f ( 1 t ) F(t)=f(x)=f(\frac{1}{t}) F(t)=f(x)=f(t1) G ( t ) = g ( x ) = g ( 1 t ) G(t)=g(x)=g(\frac{1}{t}) G(t)=g(x)=g(t1), 当 x → − ∞ x \rightarrow -\infty x 时, t → 0 − t \rightarrow 0- t0。此时,定理条件变为
lim ⁡ t → 0 − F ( t ) = lim ⁡ t → 0 − G ( t ) = 0 , F ′ ( t ) = − 1 t 2 ⋅ f ′ ( 1 t ) , G ′ ( t ) = − 1 t 2 ⋅ g ′ ( 1 t ) ≠ 0 , \underset{t \rightarrow 0-}{\lim}F(t)=\underset{t \rightarrow 0-}{\lim}G(t)=0,\quad F'(t)=-\frac{1}{t^2}\cdot f'(\frac{1}{t}),\quad G'(t)=-\frac{1}{t^2}\cdot g'(\frac{1}{t})\ne0,\quad t0limF(t)=t0limG(t)=0,F(t)=t21f(t1),G(t)=t21g(t1)=0,
以及
lim ⁡ t → 0 − F ′ ( t ) G ′ ( t ) = lim ⁡ t → 0 − − 1 t 2 ⋅ f ′ ( 1 t ) − 1 t 2 ⋅ g ′ ( 1 t ) = A ( A 为 有 限 数 , 或 ± ∞ ) . \underset{t \rightarrow 0-}{\lim}\frac{F'(t)}{G'(t)}=\underset{t \rightarrow 0-}{\lim}\frac{-\frac{1}{t^2}\cdot f'(\frac{1}{t})}{-\frac{1}{t^2}\cdot g'(\frac{1}{t})}=A\quad(A为有限数,或\pm\infty). t0limG(t)F(t)=t0limt21g(t1)t21f(t1)=A(A±).
于是,由 定理2 知,
lim ⁡ x → − ∞ f ( x ) g ( x ) = lim ⁡ t → 0 − F ( t ) G ( t ) = A . \underset{x \rightarrow -\infty}{\lim}\frac{f(x)}{g(x)}=\underset{t \rightarrow 0-}{\lim}\frac{F(t)}{G(t)}=A. xlimg(x)f(x)=t0limG(t)F(t)=A.

证毕

\quad 作为 定理 4定理 5 的综合,有下面的 定理 6


定理 6(L’Hospital):设函数 f ( a ) f(a) f(a) g ( x ) g(x) g(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上可导,若满足:

  1. lim ⁡ x → ∞ f ( x ) = lim ⁡ x → ∞ g ( x ) = 0 \underset{x \rightarrow \infty}{\lim}f(x)=\underset{x \rightarrow \infty}{\lim}g(x)=0 xlimf(x)=xlimg(x)=0
  2. g ′ ( x ) ≠ 0 g'(x)\ne 0 g(x)=0
  3. lim ⁡ x → ∞ f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow \infty}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xlimg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → ∞ f ( x ) g ( x ) = lim ⁡ x → ∞ f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow \infty}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow \infty}{\lim}\frac{f'(x)}{g'(x)}=A. xlimg(x)f(x)=xlimg(x)f(x)=A.


处理 ∗ ∞ \frac{*}{\infty} 型的L’Hospital 法则


定理 7(L’Hospital):设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) ( x 0 , x 0 + ρ ) (x_0,x_0+\rho) (x0,x0+ρ) 上可导( ρ > 0 \rho>0 ρ>0),若满足:

  1. lim ⁡ x → x 0 + g ( x ) = ∞ \underset{x \rightarrow x_0+}{\lim}g(x)=\infty xx0+limg(x)=;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xx0+limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → x 0 + f ( x ) g ( x ) = lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow x_0+}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=A. xx0+limg(x)f(x)=xx0+limg(x)f(x)=A.


证明:

\quad − ∞ < A < + ∞ -\infty<A <+\infty <A<+ 时,由于 lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A \underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=A xx0+limg(x)f(x)=A,所以对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,存在 d 1 d_1 d1 0 < d 1 < ρ 0<d_1<\rho 0<d1<ρ),当 0 < x − x 0 < d 1 0<x-x_0<d_1 0<xx0<d1 时,成立
∣ f ′ ( x ) g ′ ( x ) − A ∣ < ϵ . \left|\frac{f'(x)}{g'(x)}-A\right|<\epsilon. g(x)f(x)A<ϵ.
a = x 0 + d 1 a=x_0+d_1 a=x0+d1,任取 x ∈ ( x 0 , a ] x \in (x_0,a] x(x0,a],在 [ x , a ] [x,a] [x,a] 上使用 Cauchy 中值定理,存在 ξ ∈ ( x , a ) \xi \in (x,a) ξ(x,a),使得
f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) , \frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}, g(x)g(a)f(x)f(a)=g(ξ)f(ξ),
于是得到
∣ f ( x ) − f ( a ) g ( x ) − g ( a ) − A ∣ = ∣ f ′ ( ξ ) g ′ ( ξ ) − A ∣ < ϵ . \left|\frac{f(x)-f(a)}{g(x)-g(a)}-A \right|=\left|\frac{f'(\xi)}{g'(\xi)}-A\right|<\epsilon. g(x)g(a)f(x)f(a)A=g(ξ)f(ξ)A<ϵ.
\quad 此外,对于 ∀ x ∈ ( x , a ) \forall x \in (x,a) x(x,a),成立
f ( x ) g ( x ) = f ( x ) − f ( a ) g ( x ) + g ( a ) g ( x ) = g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) + f ( a ) g ( x ) . \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)}+\frac{g(a)}{g(x)}=\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}+\frac{f(a)}{g(x)}. g(x)f(x)=g(x)f(x)f(a)+g(x)g(a)=g(x)g(x)g(a)g(x)g(a)f(x)f(a)+g(x)f(a).
于是,
∣ f ( x ) g ( x ) − A ∣ = ∣ g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) + f ( a ) g ( x ) − A ∣ = ∣ ( 1 − g ( a ) g ( x ) ) ⋅ ( f ( x ) − f ( a ) g ( x ) − g ( a ) − A ) + f ( a ) − A ⋅ g ( a ) g ( x ) ∣ ≤ ∣ 1 − g ( a ) g ( x ) ∣ ⋅ ∣ f ( x ) − f ( a ) g ( x ) − g ( a ) − A ∣ + ∣ f ( a ) − A ⋅ g ( a ) g ( x ) ∣ . \begin{aligned} \left|\frac{f(x)}{g(x)}-A\right|&=\left|\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}+\frac{f(a)}{g(x)}-A\right| \\ &=\left|\left(1-\frac{g(a)}{g(x)}\right)\cdot \left(\frac{f(x)-f(a)}{g(x)-g(a)}-A\right)+\frac{f(a)-A\cdot g(a)}{g(x)}\right| \\ &\le \left|1-\frac{g(a)}{g(x)}\right|\cdot \left|\frac{f(x)-f(a)}{g(x)-g(a)}-A \right|+\left|\frac{f(a)-A\cdot g(a)}{g(x)}\right|. \end{aligned} g(x)f(x)A=g(x)g(x)g(a)g(x)g(a)f(x)f(a)+g(x)f(a)A=(1g(x)g(a))(g(x)g(a)f(x)f(a)A)+g(x)f(a)Ag(a)1g(x)g(a)g(x)g(a)f(x)f(a)A+g(x)f(a)Ag(a).
由于 lim ⁡ x → x 0 + g ( x ) = ∞ \underset{x\rightarrow x_0+}{\lim}g(x)=\infty xx0+limg(x)=,所以存在 d 2 d_2 d2 0 < d 2 < d 1 0<d_2<d_1 0<d2<d1),使得当 0 < x − x 0 < d 2 0<x-x_0<d_2 0<xx0<d2 时,成立
∣ 1 − g ( a ) g ( x ) ∣ < 2 , ∣ f ( x ) − A ⋅ g ( a ) g ( x ) ∣ < ϵ . \left|1-\frac{g(a)}{g(x)}\right|<2,\quad \left|\frac{f(x)-A\cdot g(a)}{g(x)}\right|<\epsilon. 1g(x)g(a)<2,g(x)f(x)Ag(a)<ϵ.
\quad 综上所述,对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,存在 d 2 > 0 d_2>0 d2>0,当 0 < x − x 0 < d 2 0<x-x_0<d_2 0<xx0<d2 时,成立
∣ f ( x ) g ( x ) − A ∣ ≤ ∣ 1 − g ( a ) g ( x ) ∣ ⋅ ∣ f ( x ) − f ( a ) g ( x ) − g ( a ) − A ∣ + ∣ f ( a ) − A ⋅ g ( a ) g ( x ) ∣ < 2 ϵ + ϵ = 3 ϵ . \left|\frac{f(x)}{g(x)}-A\right|\le \left|1-\frac{g(a)}{g(x)}\right|\cdot \left|\frac{f(x)-f(a)}{g(x)-g(a)}-A \right|+\left|\frac{f(a)-A\cdot g(a)}{g(x)}\right|<2\epsilon+\epsilon=3\epsilon. g(x)f(x)A1g(x)g(a)g(x)g(a)f(x)f(a)A+g(x)f(a)Ag(a)<2ϵ+ϵ=3ϵ.
由定义,即得
lim ⁡ x → x 0 + f ( x ) g ( x ) = lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow x_0+}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=A. xx0+limg(x)f(x)=xx0+limg(x)f(x)=A.
\quad A = + ∞ A=+\infty A=+ 时,由于 lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = + ∞ \underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=+\infty xx0+limg(x)f(x)=+,所以对于任意给定的 G > 0 G>0 G>0,存在 d 3 d_3 d3 0 < d 3 < ρ 0<d_3<\rho 0<d3<ρ),使得当 0 < x − x 0 < d 3 0<x-x_0<d_3 0<xx0<d3 时,成立
f ′ ( x ) g ′ ( x ) > G . \frac{f'(x)}{g'(x)}>G. g(x)f(x)>G.
a = x 0 + d 3 a=x_0+d_3 a=x0+d3,任取 x ∈ ( x 0 , a ] x \in (x_0,a] x(x0,a],在 [ x , a ] [x,a] [x,a] 上使用 Cauchy 中值定理,存在 ξ ∈ ( x , a ) \xi \in (x,a) ξ(x,a),使得
f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) > G . \frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}>G. g(x)g(a)f(x)f(a)=g(ξ)f(ξ)>G.
由于 lim ⁡ x → x 0 + g ( x ) = ∞ \underset{x\rightarrow x_0+}{\lim}g(x)=\infty xx0+limg(x)=,所以存在 d 4 d_4 d4 0 < d 4 < d 3 0<d_4<d_3 0<d4<d3),使得当 0 < x − x 0 < d 4 0<x-x_0<d_4 0<xx0<d4 时,成立
( 1 − g ( a ) g ( x ) ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) > 1 2 ⋅ G . \left(1-\frac{g(a)}{g(x)}\right)\cdot\frac{f(x)-f(a)}{g(x)-g(a)}>\frac{1}{2}\cdot G. (1g(x)g(a))g(x)g(a)f(x)f(a)>21G.

lim ⁡ x → x 0 + [ g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) ] = + ∞ . \underset{x \rightarrow x_0+}{\lim}\left[\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}\right]=+\infty. xx0+lim[g(x)g(x)g(a)g(x)g(a)f(x)f(a)]=+.
于是
lim ⁡ x → x 0 + f ( x ) g ( x ) = lim ⁡ x → x 0 + [ g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) + f ( a ) g ( x ) ] = lim ⁡ x → x 0 + [ g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) ] + lim ⁡ x → x 0 + f ( a ) g ( x ) = ( + ∞ ) + 0 = + ∞ . \begin{aligned} \underset{x \rightarrow x_0+}{\lim}\frac{f(x)}{g(x)}&=\underset{x \rightarrow x_0+}{\lim}\left[\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}+\frac{f(a)}{g(x)}\right] \\ &=\underset{x \rightarrow x_0+}{\lim}\left[\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}\right]+\underset{x \rightarrow x_0+}{\lim}\frac{f(a)}{g(x)} \\ &=(+\infty)+0=+\infty. \end{aligned} xx0+limg(x)f(x)=xx0+lim[g(x)g(x)g(a)g(x)g(a)f(x)f(a)+g(x)f(a)]=xx0+lim[g(x)g(x)g(a)g(x)g(a)f(x)f(a)]+xx0+limg(x)f(a)=(+)+0=+.
A = − ∞ A=-\infty A= 时,由于 lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = − ∞ \underset{x \rightarrow x_0+}{\lim}\frac{f'(x)}{g'(x)}=-\infty xx0+limg(x)f(x)=,所以对于任意给定的 G > 0 G>0 G>0,存在 d 5 d_5 d5 0 < d 5 < ρ 0<d_5<\rho 0<d5<ρ),使得当 0 < x − x 0 < d 5 0<x-x_0<d_5 0<xx0<d5 时,成立
f ′ ( x ) g ′ ( x ) < − G . \frac{f'(x)}{g'(x)}<-G. g(x)f(x)<G.
a = x 0 + d 5 a=x_0+d_5 a=x0+d5,任取 x ∈ ( x 0 , a ] x \in (x_0,a] x(x0,a],在 [ x , a ] [x,a] [x,a] 上使用 Cauchy 中值定理,存在 ξ ∈ ( x , a ) \xi \in (x,a) ξ(x,a),使得
f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) < − G . \frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}<-G. g(x)g(a)f(x)f(a)=g(ξ)f(ξ)<G.
由于 lim ⁡ x → x 0 + g ( x ) = ∞ \underset{x\rightarrow x_0+}{\lim}g(x)=\infty xx0+limg(x)=,所以存在 d 6 d_6 d6 0 < d 6 < d 5 0<d_6<d_5 0<d6<d5),使得当 0 < x − x 0 < d 6 0<x-x_0<d_6 0<xx0<d6 时,成立
( 1 − g ( a ) g ( x ) ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) < ( − 2 ) ⋅ G . \left(1-\frac{g(a)}{g(x)}\right)\cdot\frac{f(x)-f(a)}{g(x)-g(a)}<(-2)\cdot G. (1g(x)g(a))g(x)g(a)f(x)f(a)<(2)G.

lim ⁡ x → x 0 + [ g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) ] = − ∞ . \underset{x \rightarrow x_0+}{\lim}\left[\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}\right]=-\infty. xx0+lim[g(x)g(x)g(a)g(x)g(a)f(x)f(a)]=.
于是
lim ⁡ x → x 0 + f ( x ) g ( x ) = lim ⁡ x → x 0 + [ g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) + f ( a ) g ( x ) ] = lim ⁡ x → x 0 + [ g ( x ) − g ( a ) g ( x ) ⋅ f ( x ) − f ( a ) g ( x ) − g ( a ) ] + lim ⁡ x → x 0 + f ( a ) g ( x ) = ( − ∞ ) + 0 = − ∞ . \begin{aligned} \underset{x \rightarrow x_0+}{\lim}\frac{f(x)}{g(x)}&=\underset{x \rightarrow x_0+}{\lim}\left[\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}+\frac{f(a)}{g(x)}\right] \\ &=\underset{x \rightarrow x_0+}{\lim}\left[\frac{g(x)-g(a)}{g(x)}\cdot\frac{f(x)-f(a)}{g(x)-g(a)}\right]+\underset{x \rightarrow x_0+}{\lim}\frac{f(a)}{g(x)} \\ &=(-\infty)+0=-\infty. \end{aligned} xx0+limg(x)f(x)=xx0+lim[g(x)g(x)g(a)g(x)g(a)f(x)f(a)+g(x)f(a)]=xx0+lim[g(x)g(x)g(a)g(x)g(a)f(x)f(a)]+xx0+limg(x)f(a)=()+0=.

证毕

类似于前面的讨论。有以下定理


定理 8(L’Hospital):设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) ( x 0 − ρ , x 0 ) (x_0-\rho,x_0) (x0ρ,x0) 上可导( ρ > 0 \rho>0 ρ>0),若满足:

  1. lim ⁡ x → x 0 − g ( x ) = ∞ \underset{x \rightarrow x_0-}{\lim}g(x)=\infty xx0limg(x)=;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → x 0 − f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow x_0-}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xx0limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → x 0 − f ( x ) g ( x ) = lim ⁡ x → x 0 − f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow x_0-}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow x_0-}{\lim}\frac{f'(x)}{g'(x)}=A. xx0limg(x)f(x)=xx0limg(x)f(x)=A.



定理 9(L’Hospital):设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在点 x 0 x_0 x0的某个邻域 O ( x 0 , ρ ) O(x_0,\rho) O(x0,ρ) 上可导( ρ > 0 \rho>0 ρ>0),若满足:

  1. lim ⁡ x → x 0 g ( x ) = ∞ \underset{x \rightarrow x_0}{\lim}g(x)=\infty xx0limg(x)=;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow x_0}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xx0limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow x_0}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow x_0}{\lim}\frac{f'(x)}{g'(x)}=A. xx0limg(x)f(x)=xx0limg(x)f(x)=A.



定理 10(L’Hospital):设函数 f ( a ) f(a) f(a) g ( x ) g(x) g(x) [ a , + ∞ ) [a,+\infty) [a,+) 上可导,若满足:

  1. lim ⁡ x → + ∞ g ( x ) = ∞ \underset{x \rightarrow +\infty}{\lim}g(x)=\infty x+limg(x)=;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → + ∞ f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow +\infty}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) x+limg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → + ∞ f ( x ) g ( x ) = lim ⁡ x → + ∞ f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow +\infty}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow +\infty}{\lim}\frac{f'(x)}{g'(x)}=A. x+limg(x)f(x)=x+limg(x)f(x)=A.



定理 11(L’Hospital):设函数 f ( a ) f(a) f(a) g ( x ) g(x) g(x) ( − ∞ , a ] (-\infty,a] (,a] 上可导,若满足:

  1. lim ⁡ x → − ∞ g ( x ) = ∞ \underset{x \rightarrow -\infty}{\lim}g(x)=\infty xlimg(x)=;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → − ∞ f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow -\infty}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xlimg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → − ∞ f ( x ) g ( x ) = lim ⁡ x → − ∞ f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow -\infty}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow -\infty}{\lim}\frac{f'(x)}{g'(x)}=A. xlimg(x)f(x)=xlimg(x)f(x)=A.



定理 12(L’Hospital):设函数 f ( a ) f(a) f(a) g ( x ) g(x) g(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上可导,若满足:

  1. lim ⁡ x → ∞ g ( x ) = ∞ \underset{x \rightarrow \infty}{\lim}g(x)=\infty xlimg(x)=;
  2. g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0
  3. lim ⁡ x → ∞ f ′ ( x ) g ′ ( x ) = A ( A 为有限数,或 ± ∞ ) \underset{x \rightarrow \infty}{\lim}\frac{f'(x)}{g'(x)}=A(A\text{为有限数,或}\pm \infty) xlimg(x)f(x)=A(A为有限数,或±)


lim ⁡ x → ∞ f ( x ) g ( x ) = lim ⁡ x → ∞ f ′ ( x ) g ′ ( x ) = A . \underset{x \rightarrow \infty}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow \infty}{\lim}\frac{f'(x)}{g'(x)}=A. xlimg(x)f(x)=xlimg(x)f(x)=A.


参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社, 2010.07.
[3] 谢惠民,恢自求,易法槐等. 数学分析习题课讲义 上册. 北京:高等教育出版社. 2003.7.10.
[4] 常庚哲,史济怀. 数学分析教程 上册. 第3版. 合肥:中国科学技术大学出版社. 2012.8.
[5] B. A. 卓里奇. 数学分析 第一卷. 第7版. 北京:高等教育出版社.2019.2.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值