概率的定义:
描述性定义:
在相同的条件下,独立重复地做
N
N
N次试验,当试验次数
N
N
N很大时,如果事件
A
A
A发生的频率
f
N
(
A
)
f_N(A)
fN(A)稳定地在
[
0
,
1
]
[0,1]
[0,1]内的某一个数值
p
p
p,而且一般来说随着试验次数的增多,这种摆动的幅度会越来越小,则称数值
p
p
p为事件
A
A
A发生的概率,记为
P
(
A
)
=
p
P(A)=p
P(A)=p。
公理化定义:
设
E
E
E为随机试验,
Ω
\Omega
Ω是它的样本空间,对于
E
E
E的每一个事件
A
A
A赋予一个实数,记为
P
(
A
)
P(A)
P(A),如果集合函数
P
(
⋅
)
P(·)
P(⋅)满足下列条件:
(1)非负性:对于每一个事件
A
A
A,
P
(
A
)
⩾
0
P(A)\geqslant 0
P(A)⩾0;
(2)规范性:
P
(
Ω
)
=
1
P(\Omega) = 1
P(Ω)=1
(3)可列可加性:对于两两互斥的事件
A
1
,
A
2
,
.
.
.
,
A
i
,
.
.
.
,
A
j
,
.
.
.
,
A
n
A_1,A_2,...,A_i,...,A_j,...,A_n
A1,A2,...,Ai,...,Aj,...,An,即
A
i
A
j
=
ϕ
(
i
≠
j
)
A_iA_j = \phi(i \neq j)
AiAj=ϕ(i̸=j)有:
P
(
⋃
n
=
1
∞
A
n
)
=
∑
n
=
1
∞
P
(
A
n
)
P(\bigcup_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty}P(A_n)
P(n=1⋃∞An)=n=1∑∞P(An)则称实数
P
(
A
)
P(A)
P(A)为事件
A
A
A的概率。
概率的性质:
性质1:
不可能事件
ϕ
\phi
ϕ的概率为0,即
P
(
ϕ
)
=
0
P(\phi)=0
P(ϕ)=0
性质2:
有限可加性,若
A
1
,
A
2
,
.
.
.
,
A
i
,
.
.
.
,
A
j
,
.
.
.
,
A
n
A_1,A_2,...,A_i,...,A_j,...,A_n
A1,A2,...,Ai,...,Aj,...,An为两两互斥事件,即
A
i
A
j
=
ϕ
(
i
≠
j
)
A_iA_j=\phi(i \neq j)
AiAj=ϕ(i̸=j),则有
P
(
⋃
i
=
1
n
A
i
)
=
∑
i
=
1
n
P
(
A
i
)
P(\bigcup_{i=1}^{n}A_i) = \sum_{i=1}^{n}P(A_i)
P(i=1⋃nAi)=i=1∑nP(Ai)
性质3:
设
A
A
A,
B
B
B是两个事件,
P
(
B
−
A
)
=
P
(
B
)
−
P
(
B
A
)
P(B-A) = P(B) - P(BA)
P(B−A)=P(B)−P(BA);特别的,若
A
⊂
B
A \subset B
A⊂B,则:
(1)
P
(
B
−
A
)
=
P
(
B
)
−
P
(
A
)
P(B-A)=P(B) - P(A)
P(B−A)=P(B)−P(A),
(2)
P
(
B
)
⩾
P
(
A
)
P(B) \geqslant P(A)
P(B)⩾P(A)
性质4:
对于任一事件
A
A
A,有
P
(
A
)
⩽
1
P(A) \leqslant 1
P(A)⩽1
性质5:
对于任一事件
A
A
A,有
P
(
A
‾
)
=
1
−
P
(
A
)
P(\overline A) = 1-P(A)
P(A)=1−P(A)
性质6:
对于任意两个事件
A
A
A、
B
B
B有
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A\cup B) = P(A) + P(B) - P(AB)
P(A∪B)=P(A)+P(B)−P(AB);特别地,若
A
A
A与
B
B
B互斥,则有
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
P(A\cup B) = P(A) + P(B)
P(A∪B)=P(A)+P(B)。
上述公式通常称为概率加法公式:
P
(
⋃
i
=
1
n
A
i
)
=
∑
i
=
1
n
P
(
A
i
)
−
∑
1
⩽
i
<
j
⩽
n
P
(
A
i
A
j
)
+
∑
1
⩽
i
<
j
<
k
⩽
n
P
(
A
i
A
j
A
k
)
+
.
.
.
+
(
−
1
)
n
−
1
P
(
A
i
A
j
.
.
.
A
n
)
P(\bigcup_{i=1}^{n}A_i) = \sum_{i=1}^{n}P(A_i)-\sum_{1\leqslant i < j \leqslant n}P(A_iA_j)+\sum_{1\leqslant i < j <k \leqslant n}P(A_iA_jA_k)+...+(-1)^{n-1}P(A_iA_j...A_n)
P(i=1⋃nAi)=i=1∑nP(Ai)−1⩽i<j⩽n∑P(AiAj)+1⩽i<j<k⩽n∑P(AiAjAk)+...+(−1)n−1P(AiAj...An)
重要的概率关系公式:
事件独立性:
事件相互独立,即多个事件的发生相互之间没有影响,或不提供任何信息引起其他事件的发生。若
A
A
A、
B
B
B两事件相互独立,则有
P
(
A
B
)
=
P
(
A
)
P
(
B
)
P(AB)=P(A)P(B)
P(AB)=P(A)P(B)
德摩根定律:
两个集合的交集的补集等于它们各自补集的并集:
A
B
‾
=
A
‾
∪
B
‾
\overline{AB}=\overline A \cup \overline B
AB=A∪B两个集合的并集的补集等于它们各自补集的交集
A
∪
B
‾
=
A
‾
∩
B
‾
\overline {A \cup B}=\overline A \cap \overline B
A∪B=A∩B
概率的性质三:
P
(
A
−
B
)
=
P
(
A
)
−
P
(
A
B
)
P(A-B) = P(A) - P(AB)
P(A−B)=P(A)−P(AB)若
B
⊂
A
B \subset A
B⊂A,则:
P
(
A
−
B
)
=
P
(
A
)
−
P
(
B
)
P(A-B)=P(A) - P(B)
P(A−B)=P(A)−P(B)
概率的性质五:
对于任一事件
A
A
A,有
P
(
A
‾
)
=
1
−
P
(
A
)
P(\overline A) = 1-P(A)
P(A)=1−P(A)
概率加法公式(概率的性质六):
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A\cup B) = P(A) + P(B) - P(AB)
P(A∪B)=P(A)+P(B)−P(AB)当
A
A
A与
B
B
B互斥,则:
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
P(A\cup B) = P(A) + P(B)
P(A∪B)=P(A)+P(B)
条件概率:
求事件
B
B
B已发生的条件下事件
A
A
A发生条件概率,即:
P
(
A
∣
B
)
=
P
(
A
B
)
P
(
B
)
P(A|B)=\frac{P(AB)}{P(B)}
P(A∣B)=P(B)P(AB)
乘法公式:
求几个事件同时发生的概率,即:
P
(
A
1
A
2
.
.
.
A
n
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
P
(
A
3
∣
A
1
A
2
)
.
.
.
P
(
A
n
∣
A
1
.
.
.
A
n
−
1
)
P(A_1A_2...A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1})
P(A1A2...An)=P(A1)P(A2∣A1)P(A3∣A1A2)...P(An∣A1...An−1)例如,若有
A
A
A、
B
B
B两随机事件,则
A
A
A、
B
B
B同时发生的概率为:
P
(
A
B
)
=
P
(
A
)
P
(
B
∣
A
)
P(AB)=P(A)P(B|A)
P(AB)=P(A)P(B∣A)
全概率公式:
某一事件
B
B
B发生是由各种原因
A
i
,
(
i
=
1
,
2
,
.
.
.
,
n
)
A_i,(i=1,2,...,n)
Ai,(i=1,2,...,n)引起的,则
B
B
B发生的概率与
P
(
B
A
i
)
,
(
i
=
1
,
2
,
.
.
.
,
n
)
P(BA_i),(i=1,2,...,n)
P(BAi),(i=1,2,...,n)有关,且等于他们的总和,即
P
(
B
)
=
∑
i
=
1
n
P
(
A
i
)
P
(
B
∣
A
i
)
P(B)=\sum_{i=1}^{n}P(A_i)P(B|A_i)
P(B)=i=1∑nP(Ai)P(B∣Ai)
贝叶斯公式(逆全概率公式):
当结果
B
B
B发生时,它是由原因
A
i
A_i
Ai引起的可能性的大小,即要计算事件
A
i
A_i
Ai在事件
B
B
B已发生的条件下的条件概率为:
P
(
A
i
∣
B
)
=
P
(
A
i
)
P
(
B
∣
A
i
)
∑
j
=
1
n
P
(
A
j
)
P
(
B
∣
A
j
)
P(A_i|B)=\frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{n}P(A_j)P(B|A_j)}
P(Ai∣B)=∑j=1nP(Aj)P(B∣Aj)P(Ai)P(B∣Ai)