1.什么是概率

什么是概率

概率,表示某种情况(事件)出现的可能性大小的一种数量指标,介于0与1之间。

概率可以有以下多种不同角度的理解。

1. 主观概率

对某种事件、情况发生的可能性大小的主观估计它表示一种心态或一种倾向性。这种心态可以来自经验和知识,也可以来自于利害关系。总之,主观概率是不客观的,包含了人为的因素在里面。

不同的人对某件事发生的情况的估计会有所不同,这取决于每个人不同的心态。这些概率都是主观概率。 比如:小明认为自己期末考试能排第一名的概率为20%(可能是因为他信心不足), 而班主任认为小明期末考试能排第一名的概率为80%(可能是基于班主任对往次考试结果的判断)

主观概率虽然不客观,但是是具有意义的:

1. 它有广泛的生活基础
2. 它可以反应认识主体的一种倾向性,具有社会意义
3. 也可以影响决策,因为许多决策都难免包含个人的判断成分

2. 古典概率

2.1 试验

什么是试验?(和实验的区别是什么)
现代汉语词典的解释:

实验(experiment): 为了检验某种科学理论或假设而进行某种操作或从事某种活动。
试验(test):为了察看某事的结果或某物的性能而从事某种活动

上面的解释并不是很直接。基本的区别在于:

实验会产生新鲜的事物,而试验只是在验证已有的情况。

在概率论中,试验的全部结果是在试验前就明确的(比如抛🎲,正面朝上的结果肯定是1~6之间)。可以把试验理解为观察。

注意:试验的结果可以是某个具体的值(如正面、反面;是、否;1,2,3,4,5,6),少数情况下也可以是取值范围(如:x>1000)。

2.2 事件

在概率论中,对于一个试验全部可能结果中的一个确定部分的陈述,就叫做一个事件。
比如,在投🎲的例子中,可以定义许多事件:(它们都是全部试验结果的集合(1,2,…,6)中的一部分)

  • E 1 = { 🎲 正 面 为 偶 数 点 } = ( 2 , 4 , 6 ) E_1 = \{🎲正面为偶数点\} = (2,4,6) E1={🎲}=(2,4,6)
  • E 2 = { 🎲 正 面 为 素 数 } = ( 2 , 3 , 5 ) E_2 = \{🎲正面为素数\} = (2,3,5) E2={🎲}=(2,3,5)
  • E 1 3 = { 🎲 正 面 为 3 的 倍 数 } = ( 3 , 6 ) E_13= \{🎲正面为3的倍数\} = (3,6) E13={🎲3}=(3,6)

事件是与试验结果有关的一个命题,其正确与否取决于试验结果如何。

相关概念:

1. 基本事件:把单一的试验结果称为“基本事件”。
2. 随机事件:在概率论中,事件常称为“随机事件”,就是说这个事件是否发生取决于机遇。
3. 不可能事件:试验中不可能发生的事件 (概率为0)
4. 必然事件:试验中一定会发生的事件(概率为1)
2.3 古典概率

古典概型也叫传统概率、其定义是由法国数学家拉普拉斯 (Laplace ) 提出的。

假定某个试验有有限个可能的结果 e 1 , e 2 , . . . , e N e_1, e_2, ..., e_N e1,e2,...,eN, 所有的结果在试验中具有同等可能的出现机会,即 1 / N 1/N 1/N的出现机会。常常把这样的试验结果称为“等可能的”。 基于“等可能”假设的概率就是古典概率。

基于古典概率可以得到“坛子模型”:

假设有一个坛子,其中包含N个大小和质地完全一样的球,M个为白球,N-M个为黑球。将N个球彻底打乱,从中抽取一个球,那么白球的概率应该为M/N。

从这个“坛子模型”出发,很多难以理解的概率可以得到感性的认识。比如事件A发生的概率是0.2, 可以理解为事件A发生的机会就好比从4黑1白中抽取白球的机会一样。

古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。 古典概率的计算主要是基于排列组合。

3. 概率的统计定义

概率的统计定义:通过实验去估计事件概率的方法。即用频率估计概率。
直观背景:一个事件出现的可能性大小,应由在多次重复实验中其出现的频繁程度去刻画。【这个实验必须能在同样条件下大量次数重复实施】

频率估计概率,但并不是概率。概率是当试验次数无限增大时频率的极限。

概率统计定义的用途:

1. 提供了估计概率的方法:频率估计概率
2. 提供了检验理论正确与否的准则:【类似于假设检验的思想】
	假如依据一定的理论计算出某事件的概率为p, 那么可以通过大量重复的实验来验证该事件的频率是否接近p。若接近,则试验结果支持了有关理论,若不接近,那么该理论可能是错误的。

4. 概率的公理化定义

公理:一些不加证明而承认的前提。这些前提规定了所讨论的对象的一些基本关系和所满足的条件,然后以之为基础,推演出所讨论的对象的进一步内容。

概率的公里化定义(柯尔莫哥洛夫公理体系):

  1. 事件的集合记作 Ω \Omega Ω, 其中的元素 ω \omega ω是一个基本事件
  2. Ω \Omega Ω 的子集构成的一个集类,记作 F \mathcal{F} F F \mathcal{F} F不必包含 Ω \Omega Ω中的全部子集。 F \mathcal{F} F 中的每个成员就称为事件
  3. 定义在 F \mathcal{F} F上的函数 P P P, 对 F \mathcal{F} F中的任一事件 A A A P ( A ) P(A) P(A)的值就是事件A的概率
  4. 对函数 P P P的要求(公理):
    1. 0 ≤ P ( A ) ≤ 1 0 \le P(A) \le 1 0P(A)1
    2. P ( Ω ) = 1 P(\Omega) =1 P(Ω)=1, P ( ∅ ) = 0 P(\varnothing) = 0 P()=0
    3. 加法公理

柯氏公理只是界定了概率论这个概念所必须满足的一般性质,它为一种普遍而严格的数学化概率理论奠定了基础(数学上的抽象化)。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值