协方差与相关系数(标准协方差)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/baishuiniyaonulia/article/details/83986495

协方差的定义

(X,Y)(X,Y)是二维随机变量,若:E[XE(X)][YE(Y)]E[X-E(X)][Y-E(Y)]存在,则称它为随机变量XXYY的协方差,记为cov(X,Y)cov(X,Y),有cov(X,Y)=E[XE(X)][YE(Y)]=E(XY)E(X)E(Y)=+xyf(x,y)dxdy+xf(x,y)dx+yf(x,y)dy\begin{aligned} cov(X,Y) & = E[X-E(X)][Y-E(Y)] \\ & = E(XY)-E(X)E(Y) \\ & = \int_{-\infty}^{+\infty}xyf(x,y)dxdy-\int_{-\infty}^{+\infty}xf(x,y)dx\int_{-\infty}^{+\infty}yf(x,y)dy \\ \end{aligned}

协方差的性质

  1. cov(X,Y)=cov(Y,X)cov(X,Y)=cov(Y,X)
  2. cov(X,X)=D(X)cov(X,X)=D(X)
  3. cov(X,Y)=E(XY)E(X)E(Y)cov(X,Y)=E(XY)-E(X)E(Y)
  4. D(X±Y)=D(X)+D(Y)±2cov(X,Y)D(X \pm Y)=D(X)+D(Y) \pm 2cov(X,Y)
  5. cov(aX,bY)=abcov(X,Y)cov(aX,bY)=abcov(X,Y)aabb是常数
  6. cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y)cov(X_1+X_2,Y)=cov(X_1,Y)+cov(X_2,Y)
  7. XXYY相互独立,则cov(X,Y)=0cov(X,Y)=0
  8. cov(X,Y)=E(XY)E(X)E(Y)=0cov(X,Y)=E(XY)-E(X)E(Y)=0D(X±Y)=D(X)+D(Y)±2cov(X,Y)=0D(X \pm Y)=D(X)+D(Y) \pm 2cov(X,Y)=0XXYY不相关

协方差的定义

cov(X,Y)cov(X,Y)存在,且D(X),D(Y)D(X),D(Y)不为零,则称cov(X,Y)D(X)D(Y)\frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}为随机变量XXYY的相关系数或标准协方差,记为ρXY\rho_{XY},即ρXY=cov(X,Y)D(X)D(Y)\rho_{XY}=\frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}
cov(X,Y)=E[XE(X)][YE(Y)]cov(X,Y) = E[X-E(X)][Y-E(Y)]可得,设X=XE(X)D(X)Y=YE(Y)D(Y)X^*=\frac{X-E(X)}{\sqrt{D(X)}},Y^*=\frac{Y-E(Y)}{\sqrt{D(Y)}}X,YX^*,Y^*分别是X,YX,Y的标准化随机变量,由协方差的定义,可知ρXY=cov(X,Y)\rho_{XY}=cov(X^*,Y^*)

相关系数的意义

已知ρXY\rho_{XY}X,YX,Y的相关系数,则有定理:

  1. ρXY1|\rho_{XY}| \leqslant 1;(ρXY>0\rho_{XY} >0称正相关,ρXY<0\rho_{XY} < 0称负相关)
  2. ρXY=1|\rho_{XY}| = 1的充要条件是:存在常数a,ba,b,使:P{Y=aX+b}=1P\{Y=aX+b\}=1XXYY以概率1存在线性关系

该定理说明了,相关系数ρXY\rho_{XY}描述了随机变量XXYY的线性相关程度,ρXY|\rho_{XY}|越接近1,则XXYY之间越接近线性关系。当ρ=1|\rho|=1时,XXYY存在线性关系。特别地,如果ρXY=0\rho_{XY}=0,则XXYY不相关,说明XXYY没有线性关系。

应当注意到,两个随机变量XXYY之间的不相关性相互独立型一般是不同的。
由相关系数的定义可以推导得,当XXYY相互独立时,必有ρXY=0\rho_{XY}=0,即XXYY不相关,但反之则不然。
独立性是比不相关性更为严格的条件,独立性反映XXYY之间不存在任何关系,而不相关性只是就线性关系而已的,即使XXYY不相关,它们之间也可能存在某种函数关系。

展开阅读全文

没有更多推荐了,返回首页