集合论—笛卡尔积与二元关系

笛卡尔积

笛卡尔积的定义

A A A B B B为集合,用 A A A中的元素作为第一元素, B B B中的元素作为第二元素,构成有序对。所有这样的有序对组成的集合称作 A A A B B B笛卡尔积,记作 A × B A×B A×B. A × B = { &lt; x , y &gt; ∣ x ∈ A , y ∈ B } A×B=\{&lt;x,y&gt;|x\in A, y\in B\} A×B={<x,y>xA,yB}由排列组合关系可知,若 A A A中有 m m m个元素, B B B中有 n n n个元素,则 A × B A×B A×B B × A B×A B×A中有 m n mn mn个元素。

例如,若 A = { a , b } A=\{a,b\} A={a,b} B = { 0 , 1 , 2 } B=\{0,1,2\} B={0,1,2},则
A × B = { &lt; a , 0 &gt; , &lt; a , 1 &gt; , &lt; a , 2 &gt; , &lt; b , 0 &gt; , &lt; b , 1 &gt; , &lt; b , 2 &gt; } A×B=\{&lt;a,0&gt;, &lt;a,1&gt;, &lt;a,2&gt;, &lt;b,0&gt;,&lt;b,1&gt;,&lt;b,2&gt;\} A×B={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>} B × A = { &lt; 0 , a &gt; , &lt; 0 , b &gt; , &lt; 1 , a &gt; , &lt; 1 , b &gt; , &lt; 2 , a &gt; , &lt; 2 , b &gt; } B×A=\{&lt;0,a&gt;,&lt;0,b&gt;,&lt;1,a&gt;,&lt;1,b&gt;,&lt;2,a&gt;,&lt;2,b&gt;\} B×A={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}

用图表表示:

集合A集合B
元素一a元素一0
元素二b元素二1
元素三2

则可得:

A × B A×B A×B第一元素(A)第二元素(B)
&lt; a , 0 &gt; &lt;a,0&gt; <a,0>a0
&lt; a , 1 &gt; &lt;a,1&gt; <a,1>a1
&lt; a , 2 &gt; &lt;a,2&gt; <a,2>a2
&lt; b , 0 &gt; &lt;b,0&gt; <b,0>b0
&lt; b , 1 &gt; &lt;b,1&gt; <b,1>b1
&lt; b , 2 &gt; &lt;b,2&gt; <b,2>b2

n n n阶笛卡尔积:
A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An( n ⩾ 2 n\geqslant 2 n2)是集合,它们的 n n n阶笛卡尔积记作 A 1 × A 2 × , . . . , × A n A_1×A_2×,...,×A_n A1×A2×,...,×An,其中 A 1 × A 2 × , . . . , × A n = { &lt; x 1 , x 2 , . . . , x n &gt; ∣ x 1 ∈ A 1 ∨ x 2 ∈ A 2 ∨ . . . ∨ x n ∈ A n } A_1×A_2×,...,×A_n=\{&lt;x_1,x_2,...,x_n&gt;|x_1\in A_1\lor x_2\in A_2\lor...\lor x_n\in A_n\} A1×A2×,...,×An={<x1,x2,...,xn>x1A1x2A2...xnAn} A 1 = A 2 = . . . = A n A_1=A_2=...=A_n A1=A2=...=An时,可将它们的 n n n阶笛卡尔积简记为 A n A^n An
例如, A = { a , b } A=\{a,b\} A={a,b},则 A 3 = { &lt; a , a , a &gt; , &lt; a , a , b &gt; , &lt; a , b , a &gt; , &lt; a , b , b &gt; , &lt; b , a , a &gt; , &lt; b , a , a &gt; , &lt; b , b , a &gt; , &lt; b , b , b &gt; } A^3=\{&lt;a,a,a&gt;,&lt;a,a,b&gt;,&lt;a,b,a&gt;,&lt;a,b,b&gt;,&lt;b,a,a&gt;,&lt;b,a,a&gt;,&lt;b,b,a&gt;,&lt;b,b,b&gt;\} A3={<a,a,a>,<a,a,b>,<a,b,a>,<a,b,b>,<b,a,a>,<b,a,a>,<b,b,a>,<b,b,b>}

笛卡尔积运算的性质:

  1. A A A B B B中有一个空集,则它们的笛卡尔积是空集,即 ∅ × B = A × ∅ = ∅ \emptyset ×B = A ×\emptyset = \emptyset ×B=A×=
  2. A ≠ B A\neq B A̸=B A A A B B B都不是空集时,有 A × B ≠ B × A A×B\neq B×A A×B̸=B×A
  3. A A A B B B C C C都不是空集时,有 ( A × B ) × C ≠ A × ( B × C ) (A×B)×C\neq A×(B×C) (A×B)×C̸=A×(B×C)
  4. 笛卡尔积运算对交和并满足分配律 A × ( B ∪ C ) = ( A × B ) ∪ ( A × C ) A×(B\cup C) = (A×B)\cup(A×C) A×(BC)=(A×B)(A×C) ( B ∪ C ) × A = ( B × A ) ∪ ( C × A ) (B\cup C)×A=(B×A)\cup(C×A) (BC)×A=(B×A)(C×A) A × ( B ∩ C ) = ( A × B ) ∩ ( A × C ) A×(B\cap C) = (A×B)\cap(A×C) A×(BC)=(A×B)(A×C) ( B ∩ C ) × A = ( B × A ) ∩ ( C × A ) (B\cap C)×A=(B×A)\cap(C×A) (BC)×A=(B×A)(C×A)
有序对、有序 n n n元组、元素的定义

有序对:
由两个元素 x x x y y y按一定的顺序排列成的二元组称作一个有序对序偶,记作 &lt; x , y &gt; &lt;x,y&gt; <x,y>,平面直角坐标系中的坐标就是一个典型的有序对。
有序对的特征:

  1. x ≠ y x \neq y x̸=y时, &lt; x , y &gt; ≠ &lt; y , x &gt; &lt;x,y&gt;\neq &lt;y,x&gt; <x,y≯=<y,x>
  2. 两个有序对相等( &lt; x , y &gt; = &lt; u , v &gt; &lt;x,y&gt;=&lt;u,v&gt; <x,y>=<u,v>)的充分必要条件是 x = u x=u x=u y = v y=v y=v.

有序 n n n元组:
一个有序 n n n元组( n ⩾ 3 n\geqslant 3 n3)是一个有序对,其中第一个元素是一个有序 n − 1 n-1 n1元组,一个有序 n n n元组记作 &lt; x 1 , x 2 , . . . , x n &gt; &lt;x_1,x_2,...,x_n&gt; <x1,x2,...,xn>,即 &lt; x 1 , x 2 , . . . , x n &gt; = &lt; &lt; x 1 , x 2 , . . . , x n − 1 &gt; , x n &gt; &lt;x_1,x_2,...,x_n&gt;=&lt;&lt;x_1,x_2,...,x_{n-1}&gt;,x_n&gt; <x1,x2,...,xn>=<<x1,x2,...,xn1>,xn>

元素:
在一个有序对 &lt; x , y &gt; &lt;x,y&gt; <x,y>中, x x x是有序对的第一元素 y y y是有序对的第二元素

二元关系

定义一:
如果一个集合为空集或者它的元素都是有序对,则称这个集合是一个二元关系,一般记作 R R R。对于二元关系 R R R,若 &lt; x , y &gt; ∈ R &lt;x,y&gt;\in R <x,y>R,则记作 x R y xRy xRy;若 &lt; x , y &gt; ∉ R &lt;x,y&gt;\notin R <x,y>/R,则记作 x ̸ R y x\not R y x̸Ry

定义二:
A A A B B B为集合, A × B A×B A×B的任何子集所定义的二元关系称作从 A A A B B B的二元关系,特别当 A = B A=B A=B时,则称作 A A A上的二元关系

关系上的计数及特殊关系:

通常集合 A A A上不同关系的数目依赖于 A A A的基数(即集合中元素的个数),若 ∣ A ∣ = n |A|=n A=n,那么 ∣ A × A ∣ = n 2 |A×A|=n^2 A×A=n2 A × A A×A A×A的子集有 2 n 2 2^{n^2} 2n2个。

A × A A×A A×A上的每一个子集就代表一个 A A A上的关系,即表示 A A A上有 2 n 2 2^{n^2} 2n2个不同的二元关系,其中有三种特殊的关系,假设有集合 A = { 1 , 2 } A=\{1,2\} A={1,2},则

  1. 空关系 ∅ = { ∅ } \emptyset=\{\emptyset\} ={}
  2. 全域关系 E A = { &lt; 1 , 1 &gt; , &lt; 1 , 2 &gt; , &lt; 2 , 1 &gt; , &lt; 2 , 2 &gt; } E_A=\{&lt;1,1&gt;,&lt;1,2&gt;,&lt;2,1&gt;,&lt;2,2&gt;\} EA={<1,1>,<1,2>,<2,1>,<2,2>}
  3. 恒等关系 I A = { &lt; 1 , 1 &gt; &lt; 2 , 2 &gt; } I_A=\{&lt;1,1&gt;&lt;2,2&gt;\} IA={<1,1><2,2>}
关系矩阵和关系图:

A = { x 1 , x 2 , . . . , x n } A=\{x_1,x_2,...,x_n\} A={x1,x2,...,xn} R R R A A A上的关系,令 r i j = { 1 , if  x i R x j 0 , if  x i ̸ R x j r_{ij}= \begin{cases} 1, &amp; \text{if $x_iRx_j$} \\ 0, &amp; \text{if $x_i\not{R} x_j$} \end{cases} rij={1,0,if xiRxjif xi̸Rxj R R R关系矩阵为: ( r i j ) = [ r 11 r 12 ⋯ r 1 n r 21 r 22 ⋯ r 2 n ⋮ ⋮ ⋱ ⋮ r n 1 r 12 ⋯ r 1 n ] (r_{ij})= \begin{bmatrix} r_{11}&amp;r_{12}&amp;\cdots&amp;r_{1n}\\ r_{21}&amp;r_{22}&amp;\cdots&amp;r_{2n}\\ \vdots&amp;\vdots&amp;\ddots&amp;\vdots\\ r_{n1}&amp;r_{12}&amp;\cdots&amp;r_{1n}\\ \end{bmatrix} (rij)=r11r21rn1r12r22r12r1nr2nr1n
V V V是一个顶点集 E E E是一个有向边集,令 V = A = x 1 , x 2 , . . . , x n V=A={x_1,x_2,...,x_n} V=A=x1,x2,...,xn。若 x i R x j x_i R x_j xiRxj,则 x i x_i xi x j x_j xj的有向边 &lt; x i , x j &gt; ∈ E &lt;x_i,x_j&gt;\in E <xi,xj>E,那么 G = &lt; V , E &gt; G=&lt;V,E&gt; G=<V,E>就是 R R R关系图

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值