第四章 二元关系和函数 4.1 集合的笛卡尔与二元关系

4.1 集合的笛卡尔与二元关系

有序对(序偶)
1
注意:
这里用圆括号和尖括号都可。

我们可以将二元概念推广到 n n n元。
2
接下来,我们进入笛卡尔积的概念:
3

笛卡尔积中的一些性质:
4
5
即:

  • 笛卡尔积不适合交换律
  • 笛卡尔积不适合结合律
  • 笛卡尔积适合分配律
  • A A A X B B B = = = B B B X A A A 不一定 B = A B=A B=A。因为 A A A有可能为∅

我们来道证题:
6
上诉操作方法我们在证明有关积运算的集合恒等式中经常用。
注意 x x x y y y这两个块之间是用 ∧ \wedge 连接的。

我们也可以将笛卡尔积推向 n n n

7

二元关系:
8
注意:
二元关系也是一个集合。

9
二元关系可以是两个集合之间的,也可以是一个集合内部的关系。

大部分关系是没有实际意义的,但是,对于任意集合 A A A都有3种特使的关系:
10

二元关系的个数:
11
A A A X B B B的子集每一个都是一个关系。分别是0~n阶,关系逐渐复杂。所以其子集个数也是其关系个数。

例:
12
我们也可以推广到 n n n元关系:
13
上诉都是以集合的形式来表示关系,我们也可以用关系矩阵关系图来表示关系,如下:

矩阵表示:
在这里插入图片描述
关系图表示:
14

练习:
1.设X为集合,|X|=n,在X上有()种不同的关系?

  • n 2 n^2 n2
  • 2 n 2^n 2n
  • 2 2 n 2^{2n} 22n
  • 2 n 2 2^{n^2} 2n2

15

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值