【Data】数据归一化处理(data normalization)

数据归一化是将不同范围的数据映射到统一区间,常用于处理单位不一致和数值范围差异大的问题,以优化模型效果。常见的归一化方法包括线性和非线性归一化,如sigmoid和tanh函数。
摘要由CSDN通过智能技术生成

介绍 Intro

数据的归一化,就是将各路嘈杂的数据映射到一个统一的区间上,只保留相对尺度而消去背景信息,从而方便下一步处理。

常用的归一化区间有

  • [0,1] [ 0 , 1 ]
  • [1,1] [ − 1 , 1 ]
  • [0.5,0.5] [ − 0.5 , 0.5 ]
  • [a,b] [ a , b ] 自定义区间

解决的问题

  • 输入的数据单位不一样,导致难以直接处理。比如给人推荐衣服,身高的参数可能是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值