【线性代数】上三角矩阵/下三角矩阵

三角矩阵是指下三角矩阵上三角矩阵的结合体,其中上三角部分和下三角部分都是对角线以下/以上的元素都为0的矩阵。要求对复三角矩阵进行求操作,可以进行如下C语言实现。 ```c #include <stdio.h> #include <stdlib.h> // 定义复三角矩阵结构体 typedef struct { int n; // 矩阵维度 double* A; // 存储矩阵元素的数组 } ComplexTriangularMatrix; // 初始化复三角矩阵 void initComplexTriangularMatrix(ComplexTriangularMatrix* matrix, int n) { matrix->n = n; matrix->A = (double*)malloc(sizeof(double) * n * n); } // 销毁复三角矩阵 void destroyComplexTriangularMatrix(ComplexTriangularMatrix* matrix) { free(matrix->A); } // 复三角矩阵 void inverseComplexTriangularMatrix(ComplexTriangularMatrix* matrix) { int n = matrix->n; double* A = matrix->A; // 逐列求 for (int j = 0; j < n; j++) { for (int i = 0; i <= j; i++) { if (i == j) { A[i * n + j] = 1.0 / A[i * n + j]; // 对角线上的元素取倒数 } else { double sum = 0.0; // 求和 for (int k = i; k < j; k++) { sum += A[i * n + k] * A[k * n + j]; } A[i * n + j] = -sum / A[j * n + j]; } } } } int main() { int n = 3; ComplexTriangularMatrix matrix; initComplexTriangularMatrix(&matrix, n); // 假设复三角矩阵的元素 matrix.A[0] = 1.0; matrix.A[1] = 0.0; matrix.A[2] = 0.0; matrix.A[3] = 2.0; matrix.A[4] = 1.0; matrix.A[5] = 0.0; matrix.A[6] = 3.0; matrix.A[7] = 4.0; matrix.A[8] = 1.0; inverseComplexTriangularMatrix(&matrix); // 输出矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { printf("%f ", matrix.A[i * n + j]); } printf("\n"); } destroyComplexTriangularMatrix(&matrix); return 0; } ``` 该代码实现了复三角矩阵的求操作,通过给定的复三角矩阵,逐列进行求。在求过程中,对角线上的元素取倒数,其他非对角线元素计算出来并取相反数。最后输出求得的矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值