【CV】3D空间中椭球曲面与直线的交点问题

本文探讨3D空间中椭球曲面的方程和直线的一般化参数方程,详细阐述了椭球曲面与通过椭球中心直线的交点模型。分为两个场景:已知M求N和已知N求M,通过解方程组确定交点坐标。
摘要由CSDN通过智能技术生成

3D空间中的椭球曲面方程与直线方程

首先,在 3D 空间 XYZ XYZ 坐标系中,
椭球曲面的方程为

(xCx)2R2x+(yCy)2R2y+(zCz)2R2z=1 ( x − C x ) 2 R x 2 + ( y − C y ) 2 R y 2 + ( z − C z ) 2 R z 2 = 1
,其中 (Cx,Cy,Cz) ( C x , C y , C z ) 为椭球的中心坐标, Rx,Ry,Rz R x , R y , R z 分别为对应坐标轴上的半径。

直线方程选用一般化的参数方程形式:

x=x0+kxty=y0+kytz=z0+kzt { x = x 0 + k x t y = y 0 + k y t z = z 0 + k z t

参数方程来源于空间方程的两点式 – 设一直线过 M1(x1,y1,z1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值