NMF和SVD在推荐系统中的应用(实战)

本文以NMF和经典SVD为例,讲一讲矩阵分解在推荐系统中的应用。

数据

item\userBenTomJohnFred
item 15505
item 25034
item 33403
item 40053
item 55445
item 65455
user\itemitem 1item 2item 3item 4item 5item 6
Ben553055
Tom504044
John030545
Fred543355

NMF

关于NMF,在浅谈隐语义模型和NMF已经有过介绍。

用户和物品的主题分布

#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np  
from sklearn.decomposition import NMF import matplotlib.pyplot as plt RATE_MATRIX = np.array( [[5, 5, 3, 0, 5, 5], [5, 0, 4, 0, 4, 4], [0, 3, 0, 5, 4, 5], [5, 4, 3, 3, 5, 5]] ) nmf = NMF(n_components=2) # 设有2个隐主题 user_distribution = nmf.fit_transform(RATE_MATRIX) item_distribution = nmf.components_ print '用户的主题分布:' print user_distribution print '物品的主题分布:' print item_distribution 

运行后输出:

用户的主题分布:
[[ 2.20884275  0.84137492]
 [ 2.08253282 -0.        ]
 [-0.          3.18154406]
 [ 1.84992603  1.60839505]]
物品的主题分布:
[[ 2.4129931   1.02524235  1.62258152  0.          1.80111078  1.69591943]
 [ 0.0435741   1.13506094  0.          1.54526337  1.21253494  1.48756118]]

可视化物品的主题分布:

#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np  
from sklearn.decomposition import NMF import matplotlib.pyplot as plt RATE_MATRIX = np.array( [[5, 5, 3, 0, 5, 5], [5, 0, 4, 0, 4, 4], [0, 3, 0, 5, 4, 5], [5, 4, 3, 3, 5, 5]] ) nmf = NMF(n_components=2) user_distribution = nmf.fit_transform(RATE_MATRIX) item_distribution = nmf.components_ item_distribution = item_distribution.T plt.plot(item_distribution[:, 0], item_distribution[:, 1], "b*") plt.xlim((-1, 3)) plt.ylim((-1, 3)) plt.title(u'the distribution of items (NMF)') count = 1 for item in item_distribution: plt.text(item[0], item[1], 'item '+str(count), bbox=dict(facecolor='red', alpha=0.2),) count += 1 plt.show() 

结果:

从距离的角度来看,item 5和item 6比较类似;从余弦相似度角度看,item 2、5、6 比较相似,item 1、3比较相似。

可视化用户的主题分布:

#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np  
from sklearn.decomposition import NMF import matplotlib.pyplot as plt RATE_MATRIX = np.array( [[5, 5, 3, 0, 5, 5], [5, 0, 4, 0, 4, 4], [0, 3, 0, 5, 4, 5], [5, 4, 3, 3, 5, 5]] ) nmf = NMF(n_components=2) user_distribution = nmf.fit_transform(RATE_MATRIX) item_distribution = nmf.components_ users = ['Ben', 'Tom', 'John', 'Fred'] zip_data = zip(users, user_distribution) plt.title(u'the distribution of users (NMF)') plt.xlim((-1, 3)) plt.ylim((-1, 4)) for item in zip_data: user_name = item[0] data = item[1] plt.plot(data[0], data[1], "b*") plt.text(data[0], data[1], user_name, bbox=dict(facecolor='red', alpha=0.2),) plt.show() 

结果:

从距离的角度来看,Fred、Ben、Tom的口味差不多;从余弦相似度角度看,Fred、Ben、Tom的口味还是差不多。

如何推荐

现在对于用户A,如何向其推荐物品呢?

方法1: 找出与用户A最相似的用户B,将B评分过的、评分较高、A没评分过的的若干物品推荐给A。

方法2: 找出用户A评分较高的若干物品,找出与这些物品相似的、且A没评分的若干物品推荐给A。

方法3: 找出用户A最感兴趣的k个主题,找出最符合这k个主题的、且A没评分的若干物品推荐给A。

方法4: 由NMF得到的两个矩阵,重建评分矩阵。例如:

#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np  
from sklearn.decomposition import NMF import matplotlib.pyplot as plt RATE_MATRIX = np.array( [[5, 5, 3, 0, 5, 5], [5, 0, 4, 0, 4, 4], [0, 3, 0, 5, 4, 5], [5, 4, 3, 3, 5, 5]] ) RATE_MATRIX[1, 2] = 0 # 对评分矩阵略做修改 print '新评分矩阵:' print RATE_MATRIX nmf = NMF(n_components=2) user_distribution = nmf.fit_transform(RATE_MATRIX) item_distribution = nmf.components_ reconstruct_matrix = np.dot(user_distribution, item_distribution) filter_matrix = RATE_MATRIX < 1e-6 # 小于0 print '重建矩阵,并过滤掉已经评分的物品:' print reconstruct_matrix*filter_matrix 

运行结果:

新评分矩阵:
[[5 5 3 0 5 5]
 [5 0 0 0 4 4]
 [0 3 0 5 4 5]
 [5 4 3 3 5 5]]
重建矩阵,并过滤掉已经评分的物品:
[[ 0.          0.          0.          0.80443133  0.          0.        ]
 [ 0.          2.19148602  1.73560797  0.          0.          0.        ]
 [ 0.02543568  0.          0.48692891  0.          0.          0.        ]
 [ 0.          0.          0.          0.          0.          0.        ]]

对于Tom(评分矩阵的第2行),其未评分过的物品是item 2、item 3、item 4。item 2的推荐值是2.19148602,item 3的推荐值是1.73560797,item 4的推荐值是0,若要推荐一个物品,推荐item 2。

如何处理有评分记录的新用户

NMF是将非负矩阵V分解为两个非负矩阵W和H:

V = W×H  

在本文上面的实现中,V对应评分矩阵,W是用户的主题分布,H是物品的主题分布。

对于有评分记录的新用户,如何得到其主题分布?

方法1: 有评分记录的新用户的评分数据放入评分矩阵中,使用NMF处理新的评分矩阵。

方法2: 物品的主题分布矩阵H保持不变,将V更换为新用户的评分组成的行向量,求W即可。

下面尝试一下方法2。

设新用户Bob的评分记录为:

[5,5,0,0,0,5] 
#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np  
from sklearn.decomposition import NMF import matplotlib.pyplot as plt RATE_MATRIX = np.array( [[5, 5, 3, 0, 5, 5], [5, 0, 4, 0, 4, 4], [0, 3, 0, 5, 4, 5], [5, 4, 3, 3, 5, 5]] ) nmf = NMF(n_components=2) user_distribution = nmf.fit_transform(RATE_MATRIX) item_distribution = nmf.components_ bob = [5, 5, 0, 0, 0, 5] print 'Bob的主题分布:' print nmf.transform(bob) 

运行结果是:

Bob的主题分布:  
[[ 1.37800534  0.69236738]]

经典SVD

关于SVD的一篇好文章:强大的矩阵奇异值分解(SVD)及其应用

相关分析与上面类似,这里就直接上代码了。

#!/usr/bin/python2.7
# coding: UTF-8
import numpy as np  
from scipy.sparse.linalg import svds from scipy import sparse import matplotlib.pyplot as plt def vector_to_diagonal(vector): """ 将向量放在对角矩阵的对角线上 :param vector: :return: """ if (isinstance(vector, np.ndarray) and vector.ndim == 1) or \ isinstance(vector, list): length = len(vector) diag_matrix = np.zeros((length, length)) np.fill_diagonal(diag_matrix, vector) return diag_matrix return None RATE_MATRIX = np.array( [[5, 5, 3, 0, 5, 5], [5, 0, 4, 0, 4, 4], [0, 3, 0, 5, 4, 5], [5, 4, 3, 3, 5, 5]] ) RATE_MATRIX = RATE_MATRIX.astype('float') U, S, VT = svds(sparse.csr_matrix(RATE_MATRIX), k=2, maxiter=200) # 2个隐主题 S = vector_to_diagonal(S) print '用户的主题分布:' print U print '奇异值:' print S print '物品的主题分布:' print VT print '重建评分矩阵,并过滤掉已经评分的物品:' print np.dot(np.dot(U, S), VT) * (RATE_MATRIX < 1e-6) 

运行结果:

用户的主题分布:
[[-0.22279713  0.57098887]
 [-0.51723555  0.4274751 ]
 [ 0.82462029  0.38459931]
 [ 0.05319973  0.58593526]]
奇异值:
[[  6.39167145   0.        ]
 [  0.          17.71392084]]
物品的主题分布:
[[-0.53728743  0.24605053 -0.40329582  0.67004393  0.05969518  0.18870999]
 [ 0.44721867  0.35861531  0.29246336  0.20779151  0.50993331  0.53164501]]
重建评分矩阵,并过滤掉已经评分的物品:
[[ 0.          0.          0.          1.14752376  0.          0.        ]
 [ 0.          1.90208543  0.         -0.64171368  0.          0.        ]
 [ 0.21491237  0.         -0.13316888  0.          0.          0.        ]
 [ 0.          0.          0.          0.          0.          0.        ]]

可视化一下:

经典SVD + 协同过滤

0代表没有评分,但是上面的方法(如何推荐这一节的方法4)又确实把0看作了评分,所以最终得到的只是一个推荐值(而且总体都偏小),而无法当作预测的评分。在How do I use the SVD in collaborative filtering?有这方面的讨论。

SVD简要介绍

SVD的目标是将m*n大小的矩阵A分解为三个矩阵的乘积:

A=USVTA=U∗S∗VT

U和V都是正交矩阵,大小分别是m*mn*n。S是一个对角矩阵,大小是m*n,对角线存放着奇异值,从左上到右下依次减小,设奇异值的数量是r

kk<<r

取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有

Ak=UkSkVTkAk=Uk∗Sk∗VkT

AkAk可以认为是AA的近似。

下面的算法将协同过滤和SVD结合了起来。

Item-based Filtering Enhanced by SVD

这个算法来自下面这篇论文:

Vozalis M G, Margaritis K G. Applying SVD on Generalized Item-based Filtering[J]. IJCSA, 2006, 3(3): 27-51.

1、 设评分矩阵为R,大小为m*n,m个用户,n个物品。R中元素rijrij代表着用户uiui对物品ijij的评分。

2、 预处理R,消除掉其中未评分数据(即值为0)的评分。

  • 计算R中每一行的平均值(平均值的计算中不包括值为0的评分),令Rfilledin=RRfilled−in=R,然后将RfilledinRfilled−in中的0设置为该行的平均值。
  • 计算R中每一列的平均值(平均值的计算中不包括值为0的评分)riri,RfilledinRfilled−in中的所有元素减去对应的riri,得到正规化的矩阵RnormRnorm。(norm,即normalized)。

3、 对RnormRnorm进行奇异值分解,得到: Rnorm=USVTRnorm=U∗S∗VT

4、 设正整数k,取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有

Rred=UkSkVTkRred=Uk∗Sk∗VkT

red,即dimensionality reduction中的reduction。可以认为k是指最重要的k个主题。定义RredRred中元素rrijrrij用户i对物品j在矩阵RredRred中的值。

5、 UkS12kUk∗Sk12,是用户相关的降维后的数据,其中的每行代表着对应用户在新特征空间下位置。S12kVTkSk12∗VkT,是物品相关的降维后的数据,其中的每列代表着对应物品在新特征空间下的位置。

S12kVTkSk12∗VkT中的元素mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。(共有k个主题)。

6、 获取物品之间相似度。

  • 根据S12kVTkSk12∗VkT计算物品之间的相似度,例如使用余弦相似度计算物品j和f的相似度:

  • 相似度计算出来后就可以得到每个物品最相似的若干物品了。

7、 使用下面的公式预测用户a对物品j的评分:这个公式里有些变量的使用和上面的冲突了(例如k)。 ll是指取物品j最相似的ll个物品。 mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。 simjksimjk是物品j和物品k的相似度。 RredRred中元素rrakrrak是用户a对物品k在矩阵RredRred中对应的评分。ra¯ra¯是指用户a在评分矩阵RR中评分的平均值(平均值的计算中不包括值为0的评分)。

参考

SVD Recommendation System in Ruby 这篇文章使用的数据来自该链接,里面处理新用户的方法表示没看懂。

How do I use the SVD in collaborative filtering?

Vozalis M G, Margaritis K G. Applying SVD on Generalized Item-based Filtering[J]. IJCSA, 2006, 3(3): 27-51.

转载于:https://www.cnblogs.com/AngelaSunny/p/5231981.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值