r语言学习笔记—radiant包
--------仅用于个人学习知识整理和sas/R语言/python代码整理
--------文章使用数据都为脱敏模拟数据
--------文章首发于我的知乎:https://zhuanlan.zhihu.com/p/86306521
简介
radiant是r的包,基于r shiny开发,可以对数据进行简单的分析,进阶可以进行统计建模分析,并支持报表输出
radiant的开发者文档地址:https://github.com/radiant-rstats/docs/tree/gh-pages/data/app
2 数据导入及启动
2.1 导入方法1(推荐使用这个)
radiant本质是r语言包,所以可以先将文件导入到r studio环境中
好处是可以直接读取sas文件,并且可以选择编码
不写代码的方式:可以通过r studio的import dataset功能导入excel/csv/sas文件
如果遇到中文编码问题,可以使用locale选项选择编码格式
一般windows下编码为gbk(GB2312),linux下编码为utf-8
导入数据到r环境中,就可以调用radiant,会在浏览器打开监听窗口进行操作
####start####
library(radiant)
radiant()
此时在radiant的页面选择from global workspace的文件 即可看到所有r studio环境中的文件,导入即可
2.2 导入方法2
直接在radiant的导入模块中选择导入数据的格式,不过不支持sas格式
3. 基础使用
3.1 筛选数据—view视图
实现对列的筛选 选择 以及创建列后供后续使用
得到了筛选后的数据集后,在dataset栏即可使用
#####2.2 画图—visualize视图
请自行探索各类图形
3.3 数据计算—pivot视图
3.4 数据计算plus—explore视图
开发者文档中提到,pivot适合单变量简单汇总等计算(以及转置),expolre则可进行多变量的计算
原理基本和pivot相似
3.5 列变换—transform视图
transform可以对列进行一些操作,目前探索了几个有用的变换
筛选数据:
改变数据类型:
标准化:这里还能看到25% 75%分位数
应用函数:比如整列取ln 开根号等
3.6 表连接—combine视图
可以进行inner join / left join等操作,无比强大
在此不赘述join的方法
3.7 存储
4. 进阶使用
进阶使用可以进行计算统计指标 统计建模等功能
建模不进行介绍,有r和python可以更好的完成
4.1 correlation
使用方法:直接在左边多选要算correlation的变量,可以直接得到右图的correlation矩阵
4.2 随机抽样