镰刀韭菜
视野,意志,品格;目标,坚持,实践
展开
-
【Workflow】标准流程描述语言 WDL最佳实践
WDL 是 Workflow Description Language的缩写,有时也写作 Workflow Definition Language,是美国 Broad Institute 推出的工作流描述语言。WDL + Cromwell(an execution engine that can run WDL scripts)是目前可以更好使用GATK的一套工具。这里学习wdl的快速入门教程。WDL是一种流程编写语言,没有太多复杂的逻辑和语法,入门简单。原创 2023-06-23 08:00:00 · 1293 阅读 · 0 评论 -
【Workflow】10分钟带你安装使用Cromwell及其相关组件
WDL是Broad Institute开发的“human readable and writable”定义组织任务与工作流的一种语言,主要面向生物信息/基因组学等领域。Cromwell 是WDL语言的任务管理引擎, 在 BSD 3-Clause 许可下开源。原创 2023-06-20 19:44:53 · 979 阅读 · 0 评论 -
【Workflow】10分钟快速了解WDL/Cromwell工作流
WDL是定义组织任务与工作流的一种语言,主要面向生物信息/基因组学等领域。Cromwell 是WDL语言的任务管理引擎, 在 BSD 3-Clause 许可下开源。原创 2023-06-20 14:34:16 · 1011 阅读 · 0 评论 -
【生信】KEGG数据库在线使用
KEGG数据库在线使用KEGG简介KEGG是一个整合了基因组、化学和系统功能信息的数据库。把从已经完整测序的基因组中得到的基因目录与更高级别的细胞、物种和生态系统水平的系统功能关联起来是KEGG数据库的特色之一。与其他数据库相比,KEGG 的一个显著特点就是具有强大的图形功能,它利用图形而不是繁缛的文字来介绍众多的代谢途径以及各途径之间的关系,这样可以使研究者能够对其关注的代谢途径有直观全...原创 2018-12-12 22:47:01 · 17312 阅读 · 4 评论 -
【生物信息】生物信息中High-Order高阶关系研究论文集锦(4)
古典理论表明,大群落被物种之间的随机互动所破坏,造成了生态系统多样性的上限。然而,物种相互作用往往发生在高阶组合中,因此两个物种之间的相互作用受到一个或多个其他物种的调节。在这里,通过模拟具有随机交互作用的群落的动态,我们发现多样性和稳定性之间的经典关系是颠倒的高阶交互作用。更具体地说,虽然随着物种数量的增加,群落对成对相互作用的敏感度增加,但其对三向相互作用的敏感性保持不变,而对四向相互作用的敏感性却降低了。因此,虽然配对的相互作用导致了对物种添加的敏感性,但是四向相互作用导致对物种去除的敏感性,并且它们原创 2023-03-22 23:00:00 · 452 阅读 · 0 评论 -
【生物信息】生物信息中High-Order高阶关系研究论文集锦(3)
作为人体与环境的外部界面,皮肤作为物理屏障来防止外来病原体的侵入,同时为共生菌群提供栖息地。皮肤恶劣的自然景观,特别是干燥的营养贫乏的酸性环境也有助于病原体在人类皮肤定植时面临的困境。尽管如此,皮肤是由一个多样化的微生物群落殖民。在这篇综述中,我们描述了扩增子和鸟枪宏基因组DNA测序研究,这些研究已经用于评估与皮肤从王国到菌株水平相关的微生物的分类多样性。我们讨论了皮肤微生物群落的最新见解,包括它们在健康和疾病中的组成,物种之间的动态以及与免疫系统的相互作用,重点是痤疮丙酸杆菌,表皮葡萄球菌和金黄色葡萄球菌原创 2023-03-21 08:00:00 · 139 阅读 · 0 评论 -
【生物信息】生物信息中High-Order高阶关系研究论文集锦(2)
人类微生物组在人类健康中起着关键作用,并与许多疾病有关。基于宏基因组学的研究正在生成关于健康和疾病中微生物组成的有价值的信息,表明非中性组装过程和复杂的共生模式。然而,构成微生物群的潜在生态力量仍不清楚。具体而言,单独的组成研究并没有关于相互作用机制,潜在竞争或逆向信息的信息,不能清楚地区分栖息地过滤和物种分类组装过程。为了应对这一挑战,我们引入了一个计算框架,将基于宏基因组学的成分数据与物种间相互作用的基因组尺度代谢模型相结合。我们使用计算机模拟的代谢网络模型来预测154种微生物组群之间的竞争和互补性水平原创 2023-03-19 08:00:00 · 361 阅读 · 0 评论 -
【生物信息】生物信息中High-Order高阶关系研究论文集锦(1)
微生物群现在被广泛认为是所有生物体和生态系统健康的中心参与者,随后一直是深入研究的主题。然而,分析微生物组数据并将其转化为有意义的生物学见解仍然非常具有挑战性。在这篇综述中,我们强调了网络理论的最新进展及其对微生物组研究的适用性。我们讨论新兴图形理论概念和其他研究领域中使用的方法,并展示它们如何非常适合增强我们对微生物群体内发生的高阶相互作用的理解。基于网络的分析方法有可能帮助解决复杂的多种微生物和微生物与宿主的相互作用问题,从而进一步推动微生物组研究对个性化医疗,公共卫生,环境和工业应用以及农业的适用性。原创 2023-03-17 08:00:00 · 354 阅读 · 0 评论 -
【研究计划书】基于人工智能算法的肿瘤代谢问题研究
近年来,恶性肿瘤(癌症)已经成为严重威胁全球人类健康的主要问题之一。越来越多的研究表明,肿瘤细胞的产生、发展、转移与消亡等现象与其所在的微环境密切相关。本研究主要从代谢组学角度研究肿瘤细胞与正常细胞的表达差异、与肿瘤微环境中各种细胞因子的相互作用,并整合多组学数据构建用于分析肿瘤代谢异常的人工智能算法模型,以及开发相应的应用软件,为更加深入理解肿瘤的病理机制提供一个可用的视角。原创 2022-10-17 08:00:00 · 670 阅读 · 0 评论 -
【生物信息】利用ChatGPT解释GO分析中的关于Biological Processes的问题
在Gene Ontology(GO)中,BP代表生物学过程(Biological Process),是描述生物体内发生的生物学过程的一级注释。原创 2023-03-09 16:42:34 · 466 阅读 · 0 评论 -
【生信】Fastq与Fasta格式
Fastq与Fasta格式一、关于FastqFASTQ是基于文本的,保存生物序列(通常是核酸序列)和其测序质量信息的标准格式。其序列以及质量信息都是使用一个ASCII字符标示,最初由Sanger开发,目的是将FASTA序列与质量数据放到一起,目前已经成为高通量测序结果的事实标准。二、Fastq的格式FASTQ文件中每个序列通常有四行:第一行,序列标识以及相关的描述信息,以‘@’...原创 2018-11-13 10:49:45 · 2666 阅读 · 0 评论 -
【生信】使用VSEARCH处理双端测序数据
使用VSEARCH处理双端测序数据 一般情况下,我们从ENA获取的数据为双端测序数据,而且已经去除了引入,那么如何从测序数据获得丰度数据呢?可以使用的软件有VSEARCH、USEARCH以及QIIME等。本文以VSEARCH为例,从输入双端测序序列到最终OTU表的生成。#!/bin/bash### 使用VSEARCH处理双端测序数据### 目标是得到OTU表和注释信息 ...原创 2019-03-01 11:12:48 · 6818 阅读 · 1 评论 -
【生信】使用R语言批量下载指定数据批次的双端测序数据
使用R语言批量下载指定数据批次的双端测序数据通常,论文中的双端测序数据在ENA数据库中存储,当我们需要下载的时候,可以使用ENA推荐的工具下载,但是有些环境中却不是那么方便,因此,本文基于R语言,编写了一个根据数据批次下载双端测序数据的脚本。# 下载双端测序数据path="/home/pangxinzhe/Lab_4/code"setwd(path)# 加载数据列表seqList...原创 2019-03-01 11:18:11 · 1569 阅读 · 1 评论 -
【生信】联合使用 vsearch+usearch11+QIIME 处理双端测序数据
使用 vsearch+usearch11+QIIME 处理双端测序数据上文说到,使用Vsearch、Usearch、QIIME均可以处理双端测序数据。这里为了充分利用每个工具的优点,开发了一个使用vsearch、usearch11和QIIME1.9的16S rRNA数据处理工具。输入双端测序数据,最终得到OTU丰度表以及相关的系统发育树。#!/bin/bash### 使用 vsear...原创 2019-03-01 11:23:00 · 4372 阅读 · 1 评论 -
【生信】用USEARCH 进行Alpha,Beta,进化树等分析操作
基于USEARCH 进行Alpha,Beta,进化树等分析操作上回收到,使用USEARCH处理完双端测序数据,生成OTU丰度表及代表性序列。这里,继续使用USEARCH进行微生物的Alpha、Beta、进化树等分析操作。主要分为两个部分,第一部分为处理双端测序的脚本修正,第二部分为Alpha、Beta、进化树等分析操作分析脚本。第一部分:#!/bin/bash### 使用 vse...原创 2019-03-01 11:32:47 · 5691 阅读 · 3 评论 -
【生信】使用QIIME进行 进化树,Alpha,Beta多样性 分析
使用QIIME进行 进化树,Alpha,Beta多样性 分析上回讲到,使用Usearch进行进化树,Alpha,Beta多样性的分析。同时,我们还要再次强调QIIME的伟大之处在于全流程分析的能力。因此,使用QIIME同样可以进行上述分析过程。因此,将QIIME进行进化树,Alpha,Beta多样性 分析的脚本粘贴如下,怀着开放科研的心态,供有需要的朋友参考。同时,需要注意的是因为每个人的使用...原创 2019-03-01 11:37:25 · 6535 阅读 · 1 评论 -
【生信】Docker生信基础
Docker生信基础Docker可以做什么?提供一个虚拟化的操作平台,便于安装依赖不同版本系统的工具软件 提供一个即时可用的应用软件或流程的镜像,开发者可将软件部署到镜像中,使用者直接下载使用 提供一个系统资源分配的灵活方式,可以为不同用户的程序分配独立的计算空间Docker的基本概念镜像 (Images): 是一种超轻量级的虚拟化方式。 镜像有自己的唯一ID,名字和标签,比如u...原创 2018-12-05 11:23:23 · 1379 阅读 · 1 评论 -
【生物信息学】基于SparCC, MENA, LSA, CoNet构建微生物相互作用网络
本教程将指导您使用4种流行的工具,即 MENA、 LSA、 SparCC 和 CoNet,从一个真实的(已发布的)数据集构建一个关联网络。原创 2023-01-30 23:00:00 · 1576 阅读 · 0 评论 -
【微生物研究】微生物交互关系研究论文摘要集锦
296.细菌代谢多样性识别代谢相互作用和高效生长菌株群落的计算性探索摘要:背景:代谢相互作用涉及代谢产物在微生物物种之间的交换。大多数微生物生活在社区,通常依靠代谢相互作用来增加养分供应,更好地利用特定的环境。基于约束的模型已经成功地分析了细胞代谢并描述了基因型-表型关系。但是,对基因组规模的多种群相互作用的研究还很少。基于基因组规模的方法,我们提出一个图形理论的方法与代谢模型,以探讨细菌菌株之间的代谢变异性,并鉴定和描述代谢相互作用的菌株群落由两个或两个以上菌株组成的分批培养。我们证明了我们的方法在不同原创 2022-11-30 08:00:00 · 896 阅读 · 1 评论 -
【宏基因组学】微生物宏基因组学论文摘要集锦
为了理解肠道微生物对人类健康和福祉的影响,评估其遗传潜力至关重要。这里,我们描述了基于Illumina的宏基因组测序,330万个非冗余微生物基因的组装和表征,来自124个欧洲人个体的粪便样品,从576.7千兆碱基序列中提取。该基因数据集大约是人类基因补充的150倍,含有绝大多数的流行(更常见)的群组微生物基因,可能包括大部分流行的人类肠道微生物基因。这些基因大部分是在群组中共享的。原创 2022-11-29 00:08:59 · 801 阅读 · 0 评论 -
【生信】“随机森林”在生物信息学方面的应用
“随机森林”在生物信息学方面的应用简介随机森林是一种基于决策树的机器学习算法,可以用于样本分类或回归任务,属于非线性分类器。因此它可以挖掘变量之间复杂的非线性的相互依赖关系。通过随机森林分析,可以找出区分两组样本间差异的关键成分。基础知识1. 集成学习(ensemble learning)通过建立多个模型组合来解决单一预测问题。工作原理是生成多个学习器模型,各自独立地学习和做出...原创 2018-12-07 16:08:43 · 3270 阅读 · 1 评论 -
【生信分析】基于TCGA肿瘤数据进行基因共表达网络分析
WGCNA(Weighted Gene Coexpression Network Analysis)是一个基于基因表达数据构建基因共表达网络的方法。WGCNA和差异基因分析差异基因分析主要针对样本之间的差异,WGCNA主要针对基因之间的关系。WGCNA原文WGCNA 从数千个基因的层面开始,识别临床上感兴趣的基因模块,最后使用模块内连接、基因显著性(例如基于基因表达谱与样本特征的相关性)来识别疾病通路中的关键基因,以进一步验证。WGCNA通过分析基因之间的关联性,将基因区分为多个模块。最后通过这些。原创 2022-09-19 22:00:00 · 2812 阅读 · 0 评论 -
【生信分析】Pathway Network Visualizer (PaNeV)
- `Background`: 在过去的十年中,为了解决后基因组和转录组数据挖掘的挑战,开发了大量工具来创建、编辑和分析代谢途径。特别是,当考虑到一个复杂的现象时,创建多个相互关联的感兴趣的路径网络可能有助于研究潜在的生物学,并最终确定影响所研究性状的功能候选基因。- `Results`: ==PANEV (PAthway NEtwork Visualizer)是一个用于基于基因/路径的网络可视化的 R包工具集==。基于 KEGG 上的可用信息,它可视化一个多层次(从1到 n)相互连接的上游或下游通路网络翻译 2022-02-09 21:44:56 · 839 阅读 · 0 评论 -
【生信分析】Analyzing RNA-seq data with DESeq2:输入数据和差异表达分析
Analyzing RNA-seq data with DESeq2基于DESeq2分析RNA-seq数据Abstract标准流程快速上手如何获取DESeq2的帮助致谢资金支持输入数据为何必须输入非标准化(非均一化)的counts值?DESeqDataSet基于DESeq2分析RNA-seq数据Abstract从 RNA-seq 中分析计数数据的基本任务是检测差异表达的基因。计数数据以表格的形式显示,每个样本报告了分配给每个基因的序列片段的数量。类似的数据也出现在其他分析类型中,包括comparati翻译 2022-01-21 20:00:00 · 1248 阅读 · 0 评论 -
【生信分析】生物分子网络构建基础——单调动力系统
单调动力系统1. 单调动力系统基础在生物系统中,通过化学动力学原理所建立的生物网络数学模型往往具有一些特定数学性质,尤其是生物调控网络。动力系统理论上把这类系统称为单调动力系统。1. 单调动力系统基础首先给出两个有关概念:考虑系统...原创 2021-12-01 23:00:00 · 639 阅读 · 0 评论 -
【基因调控网络】基因调控网络及其模型
基因调控网络及其模型概述基因调控网络模型布尔网络模型有向图模型线性组合模型加权矩阵模型互信息关联模型常微分方程模型基因调控机制基序和模块基因调控网络数据库概述基因调控网络是21世纪生物学研究的一个重要课题,其研究的主要内容有:①每个网络节点的功能;②基因网络结构;③复杂性层次上的动力学机制和行为;④在细胞和组织层次从基因到信号路径等各种问题。近年来,科学家发现传统遗传学假说是错误的,逐渐重视研究遗传网络。对于大型遗传网络的全局模型来说,要想知道一个生物体的所有细节和准确建立对应的模型几乎是不可能的,更原创 2021-11-30 19:30:00 · 10159 阅读 · 1 评论 -
【生信分析】一些关于生物信息的常见名字解释
一些关于生物信息的常见名字解释高通量测序:高通量测序技术(High-throughputsequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。下一代测序:英文名为N转载 2021-11-23 08:45:00 · 2996 阅读 · 0 评论 -
【生信分析】生物分子网络构建基础——酶动力学
生物分子网络构建基础——酶动力学1. Michaelis-Menten法则2. 可逆的催化反应3. Hill公式4. Species-Reaction(SR) Graph介绍很多生物化学反应是有酶参与的,因此在建立酶动力学模型的时候需要做一些调整。酶(enzyme)是催化剂(catalysts,通常是蛋白质),其作用是帮助底物(substrates)转换为产物(products),并且在此过程中,它们自身没有改变。它们的重要特征是:①催化动力(catalytic power)、②特异性(specific原创 2021-11-22 18:00:00 · 1686 阅读 · 0 评论 -
【生信分析】生物分子网络构建基础——化学反应动力学
生物分子网络构建基础——化学反应动力学Chemical Reaction Kinetics质量作用定律模型概览具体模型分类Chemical Reaction Kinetics生化反应指发生在生物体的细胞内的化学反应,它们是所有生物进行生理活动的基础,所以正确建立生化反应的数学描述是从理论上研究生物系统的核心。作为数学描述基础的质量作用定律(the law of mass action)是描述化学反应的基本定律,这个定律刻画了大分子或离子的合成及分解反应的速率。质量作用定律是一个普适的基本定律,同时考虑原创 2021-11-10 20:57:00 · 1086 阅读 · 0 评论 -
【生物网络】Computational Network Analysis with R: Applications in Biology, Medicine and Chemistry
Computational Network Analysis with R: Applications in Biology, Medicine and Chemistry使用R语言进行计算网络分析:在生物学、医学和化学中的应用Description关于作者目录1. 使用 DiffCorr 包分析和可视化生物网络中的差异相关性使用R语言进行计算网络分析:在生物学、医学和化学中的应用Description本书来自“定量网络生物学”系列。这个标题表示本书的主要内容包括用于分析网络生物学和化学信息学等领域的翻译 2021-10-31 12:30:00 · 452 阅读 · 1 评论 -
【转录调控网络】典型的基因转录调控网络推导方法——布尔网络
基因转录调控网络推导方法——布尔网络基因网络是由细胞中参与基因调控作用的DNA、RNA、蛋白质以及代谢中间物所形成的相互作用的网络。基因网络是从分子层次上对生物系统进行研究的,其研究目标是通过基因之间的相互作用从系统的角度全面说明基因组的功能和行为以揭示复杂的生命现象。基因网络有助于从基因组层次对生命过程进行详细的解释,从而达到系统地解释细胞活动、生命活动、解释疾病的发生、发展和治疗等目标。基因网络是基因组学研究的重要内容,也是当前生物学研究的前沿,因此在研究生物体的生长、发育以及疾病等过程方面受原创 2021-10-30 18:36:14 · 1749 阅读 · 0 评论 -
【转录调控网络】典型的基因转录调控网络推导方法——网络成分分析法
基因转录调控网络推导方法——网络成分分析法网络成分分析法(NCA)是由Liao等最早提出的结合基因表达数据和Chip-chip数据来推导基因调控网络和调控因子活性的方法。此方法充分利用基因调控关系的部分先验知识,具有准确度更高的优点。在模型中,基因表达数据用n×mn\times mn×m阶矩阵X来表示,这里n表示基因个数,m表示时间点或样本点。基因表达值与调控关系和调控因子活性的关系可以用下面的矩阵方程来表示,即:X=JAX=JAX=JA式中,J为n×cn\times cn×c阶矩阵,表示转录层与输原创 2021-10-29 08:30:00 · 869 阅读 · 0 评论 -
【生信分析】微阵列基因芯片数据分析的一般流程
Microarray data analysis的一般流程微阵列基因芯片数据微阵列数据分析中常见的分析领域微阵列数据分析的一般流程及主要内容微阵列基因芯片数据基因芯片,又叫做DNA微阵列基因芯片,为后基因组学提供了一种高通量和系统性的研究手段。它借用了计算机芯片的集成化特点,运用微缩技术,在一块数平方公分面积的特殊玻璃片或硅芯片布放数千或数万个核酸探针,形成微型的检测器件,将待检测样本标记后同芯片进行杂交,检体中的DNA、cDNA或RNA与探针结合后,借由荧光或电流等方式侦测,即可提供大量基因序列信息。原创 2021-10-27 08:30:00 · 4991 阅读 · 0 评论 -
【统计学习】一篇文章理解什么是组间差异检验
理解什么是组间差异检验参数检验与非参数检验抽样分布展示差异的常用图表箱线图(boxplot)散点图(Scatter plot)热图(heatmap)树状图如何寻找差异?基于类别标签的差异检验基于距离的检验方法总结参考资料首先,看一张图,对于组间差异分析有一个整体的了解:那么问题来了,什么是组间差异检验?就是组间的差异分析以及显著性检验,应用统计学上的假设检验方法,检验组间是否有差异及其差异程度。坦率地讲,所有的差异检验都基于一个假设:组间没有差异,变量之间没有关系(即原假设,H0H_0H0)。也说原创 2021-10-26 23:00:00 · 8228 阅读 · 0 评论 -
【转录调控网络】代谢组学与其他组学的联合分析经典模式简介
多组学联合分析经典模式转录组学&代谢组学联合分析转录组学&代谢组学联合分析转录组是获得生物体内基因表达的重要方法,代谢组是生物体表型的基础和直接体现者。 转录组测序可以得到大量差异表达基因和调控代谢通路,但由于基因与表型之间很难之间关联,导致关键的信号通路难以确定,因此往往达不到预期的研究目的。代谢产物是生物体在内外调控下基因转录的最终结果,是生物体表型的物质基础。在系统生物学研究时代,生物过程复杂多变,基因调控网络复杂。针对特定的生理、病理等表型进行研究,利用转录组的数据获得大量差异原创 2021-10-26 17:00:00 · 5050 阅读 · 0 评论 -
【转录调控网络】基因转录调控网络——转录因子调控网络分析
基因转录调控网络——转录因子调控网络分析转录因子(Transcription Factors, TFs)是指能够以序列特异性方式结合DNA并且调节转录的蛋白质。转录因子通过识别特定的DNA序列来控制染色质和转录,以形成指导基因组表达的复杂系统。转录水平的调控是基因调控的重要环节,其中转录因子(Transcription Factor,TF)和转录因子结合位点(Transcription Factor Binding Site,TFBS)是转录调控的重要组成部分。基因转录调控网络由于其可以直观地显示基原创 2021-10-24 21:00:00 · 9323 阅读 · 0 评论 -
【转录调控网络】典型的基因转录调控网络推导方法——贝叶斯网络
基因转录调控网络推导方法——贝叶斯网络贝叶斯网络是一种因果关系网络,被认为是现今构建基因调控网络最有效的方法之一。贝叶斯网络是指用图形来表示随机向量X=(X1,...,Xn)X=(X_1,...,X_n)X=(X1,...,Xn)的联合概率,其中变量表示基因。贝叶斯网络可以将基因调控关系用图表示出来,如图所示:其中节点表示基因,边表示调控关系,从图中可以看出基因A和基因B共同调控基因C,基因C又协同基因D调控基因E,从而可以根据基因A和基因B的状态推导基因C的状态,再根据基因C的状态并结合基因D原创 2021-10-24 15:45:42 · 3224 阅读 · 0 评论 -
【转录调控网络】典型的基因转录调控网络推导方法——微分方程方法
典型的基因转录调控网络推导方法——微分方程方法微分方程模型广泛应用于自然科学的各个领域,目前已应用于基因调控网络和转录调控网络推导中,并取得了较好的效果。在建立微分方程时,考虑到反曲函数具有更能代表真是系统、控制基因表达和处理饱和与降解的分子开关的特征,一般选择反曲函数作为转录因子的调控函数。即:f[a(t):α,β]=11+exp{−αa(t)+β}(1)f[a(t):\alpha ,\beta ]=\frac{1}{1+exp\{-\alpha a(t)+\beta \}} (1)f[a(t原创 2021-10-23 07:00:00 · 651 阅读 · 0 评论 -
【转录调控网络】典型的基因转录调控网络推导方法——伪逆矩阵模型
基因转录调控网络推导方法——伪逆矩阵模型在基因调控网络推导中,使用到的基因芯片数据通常具有样本个数少(通常小于10)而基因数目大(通常大于1000)的局限性,也就是说,实验样本个数远远小于基因的个数。另外,调控矩阵具有较强的稀疏性,即每个基因只被少量的转录因子调控,而每个转录因子只调控少量的基因。伪逆矩阵法就是为了解决基因调控网络线性模型中基因个数远远大于样本个数的问题而发展的一种有效的基因调控网络推导方法。Andrecut和Kauffman给出了推导基因调控网络的伪逆矩阵模型,并用贪婪算法进行了计算,原创 2021-10-22 18:00:00 · 383 阅读 · 0 评论 -
【转录调控网络】典型的基因转录调控网络推导方法——奇异值分解
基因转录调控网络推导方法——奇异值分解奇异值分解是线性代数中的一种矩阵分解方法,在信号处理和统计学等领域应用广泛。目前,奇异值分解已被广泛应用在大规模基因表达数据分析。例如Yeung等利用奇异值分解法在稀疏条件下重建了基因调控网络,实验证明该方法具有较高的准确性,而且具有较低的计算复杂度。为了减少复杂度,这种方法只考虑了稳态情况下的调控关系,并用一个线性微分方程组(方程1)来表示:dxi(t)dt=−λixi(t)+∑j=1nWijxi(t)+b(t)+ξi(t),i=1,2,...n\frac{\m原创 2021-10-13 20:00:00 · 305 阅读 · 0 评论