Congruence Equation(数论)

Congruence Equation(数论)

题目大意

给出a,b,p,x求解方程
n ⋅ a n ≡ b ( m o d   p ) n\cdot a^n\equiv b(mod\ p) nanb(mod p)
中所有 n ≤ x n\le x nx 的解的数量

解题思路

显然 n ⋅ a n n\cdot a^n nan有循环节 p ⋅ ( p − 1 ) p\cdot(p-1) p(p1),因此找出最小的解minn之后 ( x − m i n n ) / ( p ⋅ ( p − 1 ) ) (x-minn)/(p\cdot(p-1)) (xminn)/(p(p1))即为这一最小解所对应的最多的解的数量.其中n有循环节p, a n a^n an有循环节p-1.将n分解为 n = j ⋅ ( p − 1 ) + i n=j\cdot(p-1)+i n=j(p1)+i,原式就可以等效为 ( i − j ) ⋅ a i ≡ b ( m o d   p ) (i-j)\cdot a^i\equiv b(mod\ p) (ij)aib(mod p)也就可以等效为 i − j ≡ b ⋅ a − i ( m o d   p ) i-j\equiv b\cdot a^{-i}(mod\ p) ijbai(mod p)再通过移项就可以得到 i − b ⋅ a − i ≡ j ( m o d   p ) i-b\cdot a^{-i}\equiv j(mod \ p) ibaij(mod p)那么每一个确定的i就可以唯一确定一个j也就唯一确定了一个n也就是最小解

AC代码

#include<bits/stdc++.h>
using namespace std;
#define int long long 
typedef long long LL;
int quick_pow(int a,int b,int p)
{
	LL ans=1;
	while(b)
	{
		if(b&1) ans=ans*a%p;
		b>>=1;
		a=a*a%p;
	}
	return ans;	
}
int32_t main()
{
	int a,b,p;LL x;
	scanf("%lld%lld%lld%lld",&a,&b,&p,&x);
	LL ans=0;
	for(int i=1;i<=p-1;i++)
	{
		int y=1LL*b*(quick_pow(quick_pow(a,i,p),p-2,p))%p;
		LL temp=1LL*(p-1)*((i-y+p)%p)+i;
		if(temp<=x)
		ans=ans+(x-temp)/(1LL*p*(p-1))+1;
	}
	printf("%lld\n",ans);
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值