量子力学基础
早期量子论
黑体辐射,普朗克量子假设
热辐射、黑体辐射
热辐射:所有物体在任何温度下都向外辐射电磁波,但在不同温度下发出的各种电磁波的能量按照波长的分布随温度而不同的电磁辐射
平衡热辐射:物体具有稳定温度时,发射的电磁辐射能量等于吸收的电磁辐射能量
单色辐射本领(单色辐出度):单位时间内,从物体表面单位面积上发射的波长在 λ \lambda λ附近单位波长间隔内的辐射能
辐射出射度(辐出度):单位时间内,从物体表面单位面积发射的各种波长的总辐射量 M ( T ) = ∫ 0 ∞ M λ ( T ) d λ M(T)=\int_0^\infty M_\lambda (T)d\lambda M(T)=∫0∞Mλ(T)dλ
黑体:能全部吸收各种入射电磁波的物体
斯忒藩——玻尔兹曼定律
{ M ( T ) = ∫ 0 ∞ M λ ( T ) d λ M ( T ) = σ T 4 \begin{cases}M(T)=\int_0^\infty M_\lambda (T)d\lambda\\M(T)=\sigma T^4\end{cases} {
M(T)=∫0∞Mλ(T)dλM(T)=σT4
其中, σ = 5.67 × 1 0 − 8 W ⋅ m − 2 ⋅ K − 4 \sigma =5.67\times 10^{-8}W\cdot m^{-2}\cdot K^{-4} σ=5.67×10−8W⋅m−2⋅K−4
维恩位移公式
λ m T = b \lambda_mT=b λmT=b其中b为维恩常数 2.898 × 1 0 − 3 m ⋅ K 2.898\times10^{-3}m\cdot K 2.898×10−3m⋅K
普朗克量子假说
-3
普朗克公式 M λ ( T ) = 2 π h c 2 λ − 5 1 e h e λ k T − 1 M_\lambda(T)=2\pi hc^2\lambda^{-5}\frac{1}{e^{\frac{he}{\lambda kT}-1}} Mλ(T)=2πhc2λ−5eλkThe−11
其中 h h h为普朗克常数,其值为 6.63 × 1 0 − 34 6.63\times 10^{-34} 6.63×10−34
普朗克量子假说:
- 组成黑体腔壁的分子、原子可看作带电的线性谐振子,可以吸收和辐射电磁波
- 谐振子只能处于某些特别的能量状态,每一状态都是最小能量 ε \varepsilon ε 的整数倍
其中能量子 ε = h v \varepsilon=hv ε=hv
光电效应、光的波粒二象性
爱因斯坦的光量子理论
爱因斯坦光电效应方程:金属的自由电子吸收一个光子能量 h v hv hv之后,一部分用于电子从金属表面溢出所需的逸出功A一部分转化为光电子的动能 h v = 1 2 m v 2 + A hv=\frac{1}{2}mv^2+A hv=21mv2+A
光的波粒二象性
光子的能量 E = h v , E = m c 2 E=hv,E=mc^2 E=hv,E=mc2
光子的动量 p = E c = h v c = h λ p=\frac{E}{c}=\frac{hv}{c}=\frac{h}{\lambda} p=cE=chv=λh
康普顿效益
康普顿效应:短波射线通过物质散射时,发现散射的波长发生变化的现象
康普顿效应的具体表现与解释:
- 散射X射线的波长中有除了原波长以外一个波长大于原波长的峰值(解释:与物质的外层电子发生了碰撞,失去了部分动量)
- 折射后的变小波长与原波长的差值与散射角 ψ \psi ψ有关(解释:碰撞的能量交换与碰撞的角度有关)
- 不同的散射物质在同一散射角下改变的长度几乎相同(解释:碰撞能量的交换与碰撞的角度有关)
- 较大的波长的散射光强度随着散射物质原子序列的增加而减小(解释:随着原子序列的增大,内层电子数量减少,而与内层电子发生碰撞并不会影响波长)
据研究,得到下面几则公式:
碰撞后电子的质量
m = m 0 1 − v 2 c 2 m=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}} m=