2019 南昌邀请赛 B. Polynomial(lagrange插值)(模板)

2019 南昌邀请赛 B. Polynomial(lagrange插值)(模板)

题目大意

给出一个n次多项式的前n+1项,求多项式的前缀和

解题思路

先用插值求出第n+2项,再用插值求出前缀和的多项式,版题

模板自制。

AC代码

#include<bits/stdc++.h>
using namespace std;
const int mod = 9999991;
int quick_pow(int a,int b)
{
	int ans=1;
	while(b)
	{
		if(b&1) ans=1LL*a*ans%mod;
		a=1LL*a*a%mod;
		b>>=1;
	}
	return ans;
}
int inv[mod];
void getInv()
{
	inv[0]=inv[1]=1;
    for(int i=2;i<=1005;i++)
	inv[i] = 1LL*(mod - (mod / i)) * inv[mod % i] % mod;
	for (int i = 1; i <= 1005; ++i)inv[i] = 1LL*inv[i] * inv[i - 1] % mod;
}
namespace lagrange{//calculate k-degree polynomial Prefix sum of n or k_degree poly' value of n
	const int maxk=1000+5;//the order of the polynomial
	int coeff[maxk];int suf[maxk],bef[maxk];
	int mod;
	int k;
	void init_sum(int k_,int f[],int mod_) //need prefix k+2' value
	{
		mod=mod_;
		k=k_+2;
	    for(int i=1;i<=k;i++) coeff[i]=f[i];
	    coeff[0]=0;
	    for(int i=1;i<=k;i++) coeff[i]=(coeff[i-1]+coeff[i])%mod;
	}
	void init_val(int k_,int f[],int mod_) //need prefix k+1's value
	{
		mod=mod_;
		k=k_+1;
		for(int i=1;i<=k;i++) coeff[i]=f[i];
	}
	int calc(int n)
	{
		if(n==0) return 0;
	    if(n<=k) return coeff[n];
	    bef[0] = suf[0] = 1;
		for (int i = 1; i <= k ; ++i) {
			bef[i] = 1LL*bef[i - 1] * ((n - i) % mod) % mod;
			suf[i] = 1LL*suf[i - 1] * ((n + i - k - 1) % mod) % mod;
		}
		int res = 0;
		for (int i = 1; i <= k ; ++i) {
			int s = 1LL*coeff[i] * bef[i - 1] % mod * suf[k - i ] % mod * inv[i - 1] % mod * inv[k - i] % mod;
			if ((k - i) & 1)s = -s;
			res += s;
			res = (res % mod + mod) % mod;
		}
		return res;
	}
}
int f[1005];
int main()
{
	int t;
	scanf("%d",&t);
	getInv();
	while(t--)
	{
		int n,m;
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n+1;i++)
		{
			scanf("%d",&f[i]);
		}
		lagrange::init_val(n,f,mod);
		f[n+2]=lagrange::calc(n+2);
		lagrange::init_sum(n,f,mod);
		int L,R;
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d",&L,&R);
			printf("%d\n",(lagrange::calc(R+1)-lagrange::calc(L)+mod)%mod);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值