代数拓扑1|单纯同调

转载于:https://www.cnblogs.com/MathematicalCat/p/9521609.html

代数拓扑同调论 Algebraic Topology ........................................................................................... Allen Hatcher Title Page Table of Contents Preface Standard Notations 同调论 .......................................................................................................................................... 姜伯驹 同调论讲义 ............................................................................................................................... 段海豹 Homological Algebra ................................................... HENRI CARTAN & S.EILENBERG Title Page Preface Contents List of Symbols 代数拓扑讲义 .......................................................................................... 根据Munkers 的书整理 代数拓扑的现代方法...................................................................................... HENRI CARTAN Conceptual Mathematics - A First Introduction to Categories ............................................................................................ F.William Lawvere Stephen H.Schanuel Basic Category Theory ............................................................................. Jaap van Oosten 范畴论 .............................................................................................................................................. 贺伟 谱序列 ...................................................................................................................................... 维基百科 Spectral sequence ...................................................................................................... Wikipedia Floer homology ............................................................................................................ Wikipedia Spectral Sequences in Algebraic Topology ................................ Allen Hatcher
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值