上同调
(1)同态Abel群:设A, G都是Abel群,假如A到G的两个同态相加是通过把它们在G中的值相加来实现,那么A到G的所有同态的集合 Hom(A, G) 就是一个Abel群;
性质: ,这个同构把同态
映为元素
推广:如果A是以 为基的一个有限秩的自由Abel群,那么
,这个同构把同态
映为元素
(2)对偶同态(共轭同态):同态 引出一个反向的同态
,称为 f 的对偶同态。显示
(3)Hom函子:设 为局部小范畴,Set为集合范畴。对
中的一个固定对象A,选择另一个对象X,态射集合 Hom(A, X) 是Set范畴中的一个对象,当A固定而X变化时 Hom(A, X) 也会在Set中变动,因此构造了一个范畴之间的映射,它把
中的对象X映到Set中的对象Hom(A, X);取
的一个态射
,它必须要映到Set中的函数
,这个函数怎么定义?取
,显然
,它正好把
对应到了
,把这个函数记为
,它在h上的行为是
。因此映射把
中的态射
映为Set中的函数
,这样的映射就称为关于A的Hom函子或态射函子,记作
,或者
反变Hom函子:对偶地定义函子 ,称为关于A的反变Hom函子。它把对象X指派为集合 Hom(X, A) ,把
指派为反向的函数
,即
;
双Hom函子: ;
上述是一般的Hom函子定义。取 为Abel群范畴,对于固定的G,同态集合 Hom(X, G) 上定义同态之间的加法是把它们在G中的值相加来实现,Hom(X, G) 成为Abel群,这是我们这里要研究的Hom函子,即Abel群范畴到自身的反变Hom函子
,它把Abel群X指派为Abel群 Hom(X, G) ,把同态
指派为反向的对偶同态
,这说明Hom函子对第一个变量是反变的。若把X指派为 Hom(G,X) ,把
指派为同向的同态
,则称为协变Hom函子
,也即Hom函子对第二个变量是协变的
(4)可除群:设G是Abel群,如果对每个 和每个整数n,都存在
使得
,则称Abel群G是可除的。例如有理数在加法运算下形成一个可除群
(5)单纯上同调群:K是一个复形,G是一个Abel群
带G中系数的p维上链群:定义为 ,它是自由Abel群,当G是整数群Z时,在记号中可省略它;
带G中系数的上边缘算子: ,它将维数提升1维,它是边缘算子
的对偶。有性质
;
带G中系数的p维上闭链群: ;
带G中系数的p维上边缘链群: ,它是
的Abel子群;
带G中系数的p维上同调群: ;
p维上链:一个p维上链 ,是一个同态
,它把任意p维下链
映射为Z中的一个整数,称为上链c对下链z的取值,记作
,这是双线性记号。设
表示基本下链
(是一个p维定向单形)对应的基本上链,即
在基元
上取值为1,在其他基元上取值为0,则一个p维上链可表示为
。
p维上闭链:对 ,如果
,则称 x 为K上的一个p维单纯上闭链;
p维上边缘链:对 ,如果存在
,使得
,则称 x 为K上的一个p维单纯上边缘链;
上链映射:单纯映射 诱导链映射
,它的对偶
称为上链映射,其诱导上同调群的同态为
,可见上同调群
是一族反变函子;
上增广同态:给定复形K,标准增广同态序列 的对偶序列为
,得到一个同态
,称为上增广同态,它是单射,并且
;
约化上同调群:定义为 ,当 p>0 时
(6)相对单纯上同调群: 是复形K的一个子复形,G是一个Abel群
p维相对上链群: ;
相对上边缘算子: ,它将维数提升1维,它是相对边缘算子
的对偶。有性质
;
p维相对上闭链群: ;
p维相对上边缘链群: ,它是
的Abel子群;
p维相对上同调群:
上链映射:单纯映射 诱导链映射
,它的对偶
称为上链映射,其诱导上同调群的同态为
(8)奇异上同调群:(X, A) 为拓扑空间偶,A为X的子空间,G是一个Abel群
p维奇异上链群: ,它是自由Abel群,当G是整数群Z时,在记号中可省略它,A为空集时就是X的奇异上链群,即
;
上链:p维奇异上链是奇异下链群到系数群G的一个同态 ,它把任意p维奇异下链
的映射为G中的一个元素,称为上链
对下链
的取值,记作
,其中
是所有的p维奇异单形,这是双线性记号,而
称为基本上链,即
在基元
上取值为1,在其他基元上取值为0,因此上链也可以写成
;
赋值算子:即上链对下链的取值,它是双线性的映射 ,即固定一个分量时对另一个分量的映射是线性的;
上链的性质:
,对单纯上链则为
;
对于 ,有
;
上边缘算子: ,它将维数提升1维,它是边缘算子
的对偶。有性质
;
p维奇异上闭链群: ;
p维奇异上边缘链群: ,它是
的Abel子群;
p维奇异上同调群: 。A为空集时就是拓扑空间X的上同调群,即
;
上链映射:连续映射 诱导链映射
,它的对偶
称为上链映射,其诱导上同调群的同态为
,可见上同调群
是一族反变函子;
联系同态: ,它是由上边缘算子
诱导的;
上增广同态:标准增广同态序列 的对偶序列为
,得到一个同态
,称为上增广同态,它是单射,并且
;
约化奇异上同调群:定义为 ,当 p>0 时
(9)上链复形:与链复形对偶的概念。一个上链复形 是Abel群或模范畴上的一个连通序列,即对象序列通过一系列同态相连,使得每两个连接的映射的复合为零
。写成如下形式
上链复形的上同调群:定义为 。当所有上同调群为零时,此上链复形为正合的。
例子:
单纯上链复形: ,记作
;
奇异上链复形: ,记作
;
增广奇异上链复形: ,记作
;
上链复形的约化上同调群:对增广的上链复形 ,定义约化上同调群为
,当 p>0 时
;
(10)上链映射:两个上链复形 和
之间的链映射
,是一族同态
,使之满足
。它诱导上同调群的同态为
。如果是增广的上链复形,则链映射也要保持增广,它诱导约化上同调群的同态
;
上链同伦:两个链映射 称作是同伦的,当且仅当存在一族同态
使得
,可用下列交换图表示
上链同伦等价:对一个上链映射 ,如果存在一个上链映射
使得
分别链同伦于
上的恒等映射,即
,则称上链映射 f 是一个上链等价,g 称为 f 的上链同伦逆
(11)Abel群的自由分解:把Abel群的短正合序列 ,其中A, B是自由的,称为Abel群C的一个自由分解。任何Abel群都有自由分解,例如把B取为由C的元素生成的自由Abel群,A取为自然投影
的核,这就是C的典范自由分解
(12)映射柱:给定拓扑空间的连续映射 ,对
和Y的不交并
,通过把
的每一点 (x, 0) 与Y的点 h(x) 等同起来,而得到的粘着空间
称为h的映射柱,商映射记作
,它在Y上的限制是一个从Y到
的嵌入
,而
是X到
的嵌入
(13)赋值映射:如果 是一个链复形,那么就有一个映射
,它把上链与下链的偶
映射成G的元素
,即上链对下链的取值,它是双线性映射,把它称为赋值映射;
Kronecker指标:链复形的赋值映射 诱导的双线性映射
,即上同调群与下同调群到系数群的双线性映射,称为Kronecker指标。它是上同调类对下同调类的赋值运算,同样用
表元素
和
在这个映射下的像。对于拓扑空间X,Kronecker指标记作
;
Kronecker映射: ,定义为
,它是一个同态,并且是自然的。对拓扑空间X,Kronecker映射记作
(15)外积运算(楔积):微分之间的外积运算,外积运算法则
结合律:
分配律:
反对称性(反交换性):,从而可得
数乘运算:
(16)微分形式(外微分形式):由微分的外积和函数组成的线性组合称为微分形式。
设P, Q, R, A, B, C, H都为x, y, z的函数,则
称为一阶微分形式(一阶没有乘积,与普通的微分形式是一样的);
称为二阶微分形式;
称为三阶微分形式
特别地,函数f称为零阶微分形式,P, Q, R, A, B, C, H称为微分形式的系数。
微分形式的外积运算:满足分配律,结合律,和反交换律,即对p阶微分形式和q阶微分形式有
(17)外微分算子(外导数):把一个函数的微分概念推广到更高阶微分形式的微分。设 是
的函数,对
上的k阶微分形式
,定义其外微分运算d是
上的k+1阶微分形式
,其中指标集I(n,k)是自然数中基数为k的有序子集
外微分算子是线性算子,它就是微分形式的上边缘算子。注意外微分算子和普通微分算子运算方式相同,唯一的不同就是外微分算子运算后进行外积,而普通微分算子运算后进行正常的乘积。
例子:
0阶微分形式:就是函数本身即 ,其外微分就是全微分运算
,这表明外微分与全微分对d的定义兼容;
1阶微分形式:,其外微分为
;
2阶微分形式:,其外微分为
;
3阶微分形式:,其外微分为
(18)De Rham上同调群:设M是一个n维的微分流形
k阶微分形式群: M上可微的k阶微分形式的集合记作 ,k=0时
是M上的可微函数集合,k<0或k>n时
。
关于微分形式的加法构成Abel群,
自然地成为实数域R上的无穷维向量空间;
外微分算子(边缘算子):可以写成 ,因此外微分算子是上边缘算子,并且有性质
;
k阶闭形式群: ,满足
的微分形式
称为M上的k阶闭形式;
k阶恰当形式群: ,对k阶微分形式
,若存在k-1阶微分形式
使得
,则称
为M上的k阶恰当形式。恰当形式必然是闭形式,反之则不成立;
k阶De Rham上同调群: ,即闭形式模掉恰当形式构成的商群;
De Rham复形:上链复形 称为De Rham复形;
De Rham上同调类:称 中的两个闭形式
是上同调的,如果它们相差一个恰当形式,即
是恰当形式,它们属于同一个上同调类,记作
。De Rham上同调群中的元素就是各个上同调类,de Rham上同调的想法就是给一个流形上不同类型的闭形式分类,相差一个恰当形式的两个闭形式属于同一个同调类
(19)环:集合R上附加两个运算加法和乘法组成的代数结构 ,满足加法交换群(结合律、幺元、逆元、交换律)、乘法结合律、分配律,共6条公理
交换环:满足乘法交换律的环
幺环:含乘法幺元的环
零环:只含有一个元素(必为0)的环
子环:环R的子集S,在环的两个运算下也构成环,记作
逆元:幺环中的元素a若有逆元(ba=ab=1),则b为a的逆元,记为 。幺环的可逆元全体构成乘法群,记作
。
零因子:存在 使得 ba=0或ab=0,则称a是R中的一个零因子。幺环的零因子不是可逆元。
整环:无零因子的交换幺环(共9条公理)。无零因子的限制是为了满足消去律,消去律与无零因子是等价的概念。
除环(体):每个非零元都有逆元的幺环称为除环或称为体,即加法交换群+非零元乘法群+分配律。注意除环不一定满足乘法交换律,例如Hamliton四元数体。
单环:没有非平凡理想的环
常见的环:整数环 、一元多项式环
、多元多项式环
、域K上的全矩阵非交换环
(20)环同态:环同态是保持环运算结构的映射,即 。若即是单射又是满射,则称为环同构,记作
(21)域:每个非零元都有乘法逆元的交换幺环,记作 。即加法交换群+非零元乘法交换群+分配律(共9条公理)
(22)模:模是定义在环上的代数结构,包含一个环 和加法Abel群
,并定义了R与M间元素的二元运算。环上的左R-模包含一个Abel群
,以及一个二元运算
称为标量乘法或数乘,对
满足
环乘分配律: ;
环加分配律: ;
环乘结合律: ;
环上幺元性质:
类似地可以定义环上的右R-模M。
子模:设M为左R-模,如有子集 满足加法封闭性即
是加法Abel群M的子群,标量乘法封闭性,即
,则称
是M的子模。
商模:设N为M的子模,商模是在加法商群 M/N 上定义的左R-模,元素为 ,定义纯量乘法满足 r(x+N)=rx+N ,则商映射
是模同态,M/N 是M对N的商模。
环上的模概念是对向量空间概念的推广,这里不再要求标量位于域中,转而标量可以位于任意环中。因此模同向量空间一样是加法Abel群,定义了环元素和模元素之间的乘积,并且这个乘积是符合结合律和分配律的。当R是一个域时,左R-模M就称为域R上的向量空间,模同态就称为线性变换。模非常密切的关联于群的表示论,它还是交换代数和同调代数的中心概念,并广泛的用于代数几何和代数拓扑中
(23)模同态:A,B为两个左R-模,映射 满足加法群的同态
,保持标量乘法
,则
称为模同态
(24)上积:设X是一个拓扑空间,R是含幺交换环,X的带R系数的p维奇异上链群为 ,
是由标准单形
确定的p+q维奇异单形,
和
是
上的两个线性单形。定义上链间的一个二元运算
,对两个上链
,运算的结果为p+q维上链
,取值为
对任意的p+q维下链 ,
的取值为
其中映射 恰好是T在
的"p维前面"
上的限制,它是X的一个p维奇异单形,
恰好是T在
的"q维后面"
上的限制,它是X的一个q维奇异单形,右式中的乘法是环R中的乘法。把p+q维上链
称为上链
和
的上积,上积的取值是环R中的取值的乘法结果。
上积是上链群 (即各维上链群的外直和)中的一种乘法,它把一个p维上链与一个q维上链变成一个p+q维上链,对0维上链
,它在任意0维奇异单形
上的取值为环中的乘法幺元1,即
。因此
关于上链的外直和加法与上积构成有幺元的环,称为上链环
(25)上同调环的上积:上链的上积 诱导上同调类的上积运算
,运算结果为
,它是双线性的而且是结合的,0维上链
的上同调类
是幺元。这样上同调群的外直和
关于上同调类的外直和加法与上积构成含幺元的环,称为上同调环,它满足反交换律,即
。
例子:
De Rham上同调环:在微分流形M上,微分形式的上积就是它的外积运算 ,它诱导De Rham上同调类的上积运算
,对任意
,运算结果为
,它是双线性的,并且满足分配律。这样De Rham上同调群的外直和
关于上同调类的加法和上积构成含幺元的环,称为De Rham上同调环,它满足反交换律,即
(26)诱导环同态:如果 是拓扑空间的连续映射,那么它诱导上链环的环同态
,也诱导上同调环的环同态
(27)相对上积:设 (X, A) 为空间偶,上同调类的上积可以自然地推广为相对上积运算 ,上边缘公式、双线性性、结合性、反交换性都成立;
更一般的相对上积:是双线性映射 ,当
是一个切除对时,它有定义
主要定理:
(1)对偶同态的性质:
如果f是一个同构,那么对偶同态 也是一个同构;
如果f是零同态,那么 也是零同态;
如果f是满同态,那么 也是满同态,也即如果序列
是正合的,则对偶序列
也是正合的
(2)Hom函子的性质:
;
;
,如果
是乘以m的乘法,那么
也是;
,其中同态
表示对元素进行m次的运算;
若T是G的挠子群,则
(3)存在一下正合序列 ,其中 d=gcd(m,n)
(4)正合序列的Hom函子化:如果序列 是正合的,那么对偶序列
也是正合的,如果f是单射并且第一个序列分裂,那么对偶同态
是满射并且第二个序列分裂。由此可知协变 Hom(A, -) 函子是左正合的,反变 Hom(-, A) 函子是右正合的;
更一般的结论:如果序列 是正合的,并且G是可除的Abel群,那么对偶序列
也是正合的。
(5)上链的性质:
,对单纯上链则为
;
对于 ,有
;
所有p维定向单形构成的族 是p维链群
的标准基,设
表示由
生成的
的无限循环子群,那么
,
,即各个基元的上链子群的直积,对奇异上链群该结论也成立
(6)零维上同调群的计算:若K是一个复形,那么 等于所有符合以下条件的0维上链
构成的群:对任意属于
的同一个分支的两个0维下链v, w(即两个单点),都有
。零维约化上同调群则满足
。特别地,若
是连通的,那么
,
,并且它是由在K的每个顶点上取值为1的上链生成的;
对一般地上链复形(例如奇异上链复形 ),同样有
;
设 是X的全体道路连通分支,那么
,即一系列G的直积。特别地,当X是道路连通的时,
(7)上同调的Eilenberg-Steenrod公理:是拓扑空间的上同调论的共有性质。设G是一个Abel群,带G系数的上同调论可以定义为从拓扑空间偶范畴 到Abel群范畴AbGrp的一族反变函子
,对每个整数 n 它把空间偶 (X, A) 映为Abel群
(称为上同调群),把每个连续映射
映为上同调群的同态
(称为诱导同态),还要定义一个自然变换
称为联系同态(也称为边界映射),它们满足以下公理:
1)公理1(单位公理):如果 是恒等映射,那么诱导同态
是恒等同态;
2)公理2(复合公理): ;
3)公理3(自然变换公理):联系同态 是反变函子
的自然变换。也就是空间偶映射
满足
,即下列图表交换
4)同伦公理:如果两个映射 是同伦的,即存在一个映射
使得
对所有
成立,那么
;
5)切除公理:对任意空间偶 (X, A) 和X的开子集U,如果U的闭包包含在A内部中即 ,那么空间偶的包含映射
诱导的同态
是同构;
6)维数公理:如果P是单点空间,那么 ,
,
称为系数群;
7)正合公理:对任意空间偶 (X, A) ,上同调群序列 是长正合序列,其中
分别是由包含映射
和
诱导的同态,而
是由上边缘算子
诱导的联系同态;
8)可加性公理:如果 是拓扑空间族
的非交并,那么
,即各个分支的上同调群的直积
公理的意义:
可以证明只要符合艾伦伯格-斯廷罗德公理的上同调论都会有共同的结果,例如单纯上同调论、奇异上同调论。
(7)如果 是恒等映射,那么
是恒等同态;如果
是拓扑空间之间的两个连续映射,那么诱导同态满足
。
这说明奇异上同调论满足单位公理、复合公理
(8)上同调群的拓扑不变性:如果 是拓扑空间之间的同胚,那么 诱导同态
是一个同构
(9)多连通空间的上同调群:设 是拓扑空间X的全体道路连通分支,那么
这说明奇异上同调论满足可加性公理
(10)正合上同调序列:
复形的正合上同调序列:若 是复形K的一个子复形,那么存在一个长正合上同调序列
,如果
非空,那么结论在约化上同调中也成立;拓扑空间的正合上同调序列:对拓扑空间偶(X, A),存在长正合上同调序列
,如果A非空,那么结论在约化上同调中也成立。
这说明奇异上同调论满足正合公理
(11)如果P是单点空间,那么 ,
这说明奇异上同调论满足维数公理
(12)如果两个连续映射 是同伦的,即存在一个映射
使得
对所有
成立,那么诱导同态相等
。如果
,那么该结论在约化同调中也成立
这说明奇异上同调论满足同伦公理
(13)上同调群的同伦不变性:如果拓扑空间偶之间的连续映射 是一个同伦等价,那么诱导同态
是一个同构。如果
,那么该结论在约化同调中也成立
(14)切除定理:设A是拓扑空间X的子空间,U是X的子集并且 ,那么空间偶的包含映射
诱导的同态
是同构;
这说明奇异上同调论满足切除公理
(15)上同调的Mayer-Vietoris序列:设拓扑空间 ,如果
是一个切除对,也即拓扑空间偶的包含映射
诱导的同态
是同构,那么就有一个正合上同调序列
称为 的上同调梅耶-菲托里斯序列。如果
是非空的,那么在约化上同调中也存在类似的正合序列
(16)单纯上同调与奇异上同调的同构:设 是复形K的子复形,它们的定向单形到剖分空间的奇异单形的链映射为
,它的对偶为上链映射为
,其诱导同态
是单纯上同调与奇异上同调之间的一个同构,并且
不依赖于K的顶点的偏序选取
(17)同构 的可交换性质:单纯上同调与奇异上同调之间的同构
,与上边缘算子
,
诱导的同态
,
可交换 ;与单纯映射
和连续映射
分别诱导的同态
,
可交换
(18)自由分解的性质:如果两个Abel群的自由分解如下图表
其中水平序列是正合的,A和B是自由的,那么存在使这个图表交换的同态 和
(18)设 是两个自由链复形,如果对所有的p都有一个同调群的同态
,那么存在一个诱导该同态的链映射
,这个链映射是通过闭链群映射
扩张得到的。如果
是保持增广的,那么链映射
也是保持增广的;
设 是自由链复形的正合序列,如果
在所有维下都诱导同调的同构,那么它也诱导上同调的同构;
(19)映射柱定理:设 是拓扑空间的连续映射,那么存在一个空间
和两个嵌入映射
,使得 j 是一个同伦等价,并且图表
直至同伦是交换的。 称为映射h的映射柱。由此可知,h是一个同伦等价当且仅当i是一个同伦等价。
映射柱的构造方法:对 和Y的不交并
,通过把
的每一点 (x, 0) 与Y的点 h(x) 等同起来,而得到的粘着空间就是空间
,这也是称它为映射柱的原因。商映射记作
,它在Y上的限制是一个从Y到
的嵌入
,而
是X到
的嵌入。
类似地有自由链映射的映射柱:
设 是两个自由链复形,
是一个链映射,那么存在一个自由链复形
和两个单链映射
,使得 j 在所有维数下都诱导同调的同构,并且图表
直至链同伦是交换的,商 和
也是自由Abel群。自由链复形
称为链映射
的映射柱。
定理的意义:
同伦论中往往需要在拓扑空间上定义满足某种条件的连续映射,这对非常一般的拓扑空间来说很难着手。利用映射柱的构造法,可以把映射 的问题转化为关于嵌入
的问题。同伦论中的道路提升引理就是这方面的应用
(20)同调同构与上同调同构关系:设 是两个自由链复形,
是链映射,如果
在所有维数下诱导的同调群同态
是一个同构,那么
在所有维数下诱导的上同调群同态
也是一个同构。也就是说,
;
更一般的形式:设 是两个在低于某个维数为零调的自由链复形,
是链映射,如果
在所有维数下诱导同调群的同构,那么
是一个链同伦等价
证明思路:利用链映射的映射柱定理
(21)Kronecker映射的正合序列:如果 是自由链复形,
是Kronecker映射,那么就有一个自然的正合序列
,它是分裂的,但不是自然分裂
(22)Kronecker指标和Kronecker映射的自然性:如果 是一个链映射,Kronecker指标
对一个变量是共变的,对另一个变量是反变的,因此有
。而对Kronecker映射
,下面图表是交换的
(22)同调与上同调的关系:如果 是自由链复形,所有的p维下同调群
也都是自由的,那么Kronecker映射
对所有的p的均为同构。即上同调群
能以自然的方式看作是下同调群
的对偶群
(23)CW复形的上同调群:如果X是一个CW复形, 是它的胞腔链复形,那么对所有的p和G,都有同构
。如果X是可三角剖分的并且
是它的的三角剖分,其中K是一个复形,那么这个同构是由包含映射
诱导的
(10)曲面和空间的上同调群:
Mobuis带M及其边缘E: ;
球面 :当 i=0 或 i=n时
,当 i=n 时
,对于 i 的其他值,这些上同调群均为零;
环面 :
;
Klein瓶: 。特别地,
(11)外微分算子的性质:
线性:外微分算子是线性算子;
微分形式的外积运算:满足分配律,结合律,和反交换律,即对p阶微分形式和q阶微分形式有 ;
外积法则(上边缘公式):设 分别是
阶微分形式,则有
,这就是微分形式的上边缘公式;
Poincare引理:对任何k阶微分形式 ,若其系数具有二阶连续偏微商,则有
。逆定理也成立,即若
是一个p阶外微分式且
,则存在一个p-1阶外微分形式a,使得
(12)Stokes公式:设D是中的单连通区域,
表示D的边界,
是n-1阶微分形式,则有
它说明高阶微分形式 在区域上的积分,等于低一阶微分形式
在该区域低一维的边界上的积分。外微分运算和积分是相互抵消的。这个公式可推广到更一般的流形上
(13)零维De Rham上同调群的计算:若光滑流形M有n个连通分支,则 。这是因为M上导数为零的
函数在每个连通分量上为常数
(14)一些微分流形的De Rham上同调群:
Mobuis带M: ,因为Mobuis带可收缩为圆周
;
球面 :或者球面和一个开区间的乘积
,当 i=0 或 i=n时
,其他情况下为零群;
n-重环面 :
(15)De Rham定理:若M是紧致光滑流形,则M的De Rham上同调群同构于实系数的奇异上同调群,即 。
进一步的结果:对这些群中的上同调类定义外积运算(楔积),则赋予了环的结构,那么这两个上同调环即De Rham上同调环和实系数的奇异上同调环也是同构的。
由此可见,De Rham上同调群也是同伦不变量。德拉姆定理是代数拓扑与微分几何的主要桥梁
(16)上链环:上链群的外直和 中的上积运算
是双线性的,满足结合律,并且以0维上链
为幺元(单位元),也即设
,
,则有
双线性: ;
结合律: 。
因此 关于上链的外直和加法与上积构成有幺元的环,称为上链环。上链环的上积一般不满足反交换性
(17)上积的上边缘公式: ;
微分形式外积的上边缘公式:
(18)上同调环:上链的上积 诱导上同调类的上积运算
,运算结果为
,它是双线性的而且是结合的,0维上链
的上同调类
是幺元。这样上同调群的外直和
关于上同调类的外直和加法与上积构成含幺元的环,称为上同调环,并且上积一般不满足交换律,但一定满足反交换律(反对称性),即
(19)De Rham上同调环:在微分流形M上,微分形式的上积就是它的外积运算 ,它诱导De Rham上同调类的上积运算
,对任意
,运算结果为
,它是双线性的,并且满足分配律。这样De Rham上同调群的外直和
关于上同调类的外直和加法和上积构成含幺元的环,称为De Rham上同调环,它满足反交换律,即
。
此外,紧致光滑流形的De Rham上同调环同构于实系数的奇异上同调环,即
(20)上同调环的同伦不变性:如果 是拓扑空间的连续映射,那么它诱导上同调环的环同态
,进一步如果
是拓扑空间之间的同伦等价,那么诱导环同态
是一个同构。
注意,当两个拓扑空间的上同调群同构时,它们的上同调环不一定同构,因为正维数上同调类的每个上积可能退化为零,这样的上同调环称为平凡环。因此,利用上同调环判定两个拓扑空间是否同胚会比上同调群更为有效,但是上同调环比上同调群更难计算。
带任意系数的同调
(1)Abel群的张量积:设A, B是Abel群,F(A, B) 是由集合 生成的自由Abel群,R(A, B) 是形如
,
的所有元素生成的子群,其中
,那么商群
也是Abel群,称为A和B的张量积。把元素对 (a, b) 的陪集记为
,因为 F(A, B) 的任何元素都是元素对 (a,b) 的有限线性组合,因而
的任何元素都是形如
的元素的有限线性组合
性质:任何函数 决定唯一一个Abel群同态
,f 是双线性的当且仅当它们把子群 R(A,B) 映为零。因此每一个双线性函数
恰好生产唯一的一个同态
,双线性函数的研究转化为同态的研究
(2)Abel群同态的张量积:设 都是Abel群同态,则有唯一的一个同态
,使得对所有的 a,b 都有
,把这个同态称为 f 和 g 的张量积
(3)张量积函子:张量积是Abel群偶范畴到Abel群范畴的一个共变函子,它把Abel群偶 (A, B) 映射到 ,把 (f, g) 映射到
。它对两个群变量都是共变的
(4)同态模:设R是含幺交换环,A和B是左R-模,从A到B的所有模同态构成的群 是一个左R-模
(5)模的张量积:设A, B是含幺交换环R上的左模,F(A, B) 是由集合 生成的自由Abel群,R(A, B) 是形如
,
,
的所有元素生成的子群,其中
,那么商群
是一个左R-模,称为模A和B在环R上的张量积。把元素对 (a, b) 的陪集记为
。
类似地,设 都是模同态,则有唯一的一个模同态
,使得对所有的 a,b 都有
,把这个同态称为 f 和 g 的张量积。从而模的张量积是一个函子。
模的张量积与Abel群的张量积有类似的性质和定理,除 的通常关系外,在
上还有关系
。注意
是
的子群,它同构于
模掉由形如
的所有项生成的子群所得的商群
(6)带任意系数的同调群(张量积形式):
链复形:G是一个Abel群, 是链复形;
带G中系数的同调群:链复形 ,p维同调群为
。注意如果G是整数群,那么
自然与
同构;
带G中系数的约化同调群:在链复形 的 -1维添加群
,并用
作为边缘算子,即
,p维约化同调群为
,有
,
;
链映射:如果 是链映射,那么
也是链映射,它诱导的同态记作
。如果
保持增广的,那么
也诱导约化同调群的同态;
链同伦:如果 都是链映射,D是它们之间的链同伦,那么
是
之间的链同伦。如果 f 是链同伦等价,那么
也是链同伦等价。如果 f, g 是链同伦的,那么诱导的带任意系数的同态
是相等的;
正合同调序列:如果链复形的短正合序列 在每一维数下都是分裂的,那么张量序列
是正合的,这样就得到一个正合同调序列
,其中
是由
诱导的
主要定理:
(1)存在一个同构 将
映射为 ng ,并且关于G的同态是自然的,即下列图表交换
(2)满态的张量积是一定是满态:如果同态 都是满的,那么
也是满的,并且
是由形如
的所有元素生成的子群。注意单态的张量积不一定是单态
(3)正合序列的张量化:如果序列 是正合的,那么序列
也是正合的,如果 f 是单射并且第一个序列是分裂的,那么
也是单射并且第二个序列是分裂的。由此可知张量积函子是右正合函子;
更一般地结论:如果序列 是正合的,并且G是无挠的,那么序列
也是正合的。
(4)存在一个自然的同构 ,特别地,当m=1时就是
(5)张量积的性质:
交换律: ;
结合律: ;
分配律: ,
(6)自由Abel群的张量积是自由Abel群:如果A, B分别是以 为基的自由Abel群,那么
是以
为基的自由Abel群
(7)若A是一个R模,则存在一个R模的同构 。若A和B是都是Z模,那么
(8)向量空间的张量积性质:如果A,B,C都域F上的向量空间,那么张量积函子 保持向量空间的正合序列,并且每一个这样的序列都是分裂的。如果A和B分别有基
,那么
是向量空间
的基
(9)如果A,B是Q上的向量空间,那么
(10)设 是自由链复形,如果链映射
在所有维数下都诱导同调的同构,那么链映射
也是如此
(11)设 是自由链复形,那么就有一个正合序列
,并且这个序列是分裂的,其中 f 是由包含映射诱导的,如果对所有的 i 同调群
是自由的,那么 f 是一个同构
同调代数
(1)典范自由分解:把Abel群的短正合序列 ,其中B, C是自由的,称为Abel群A的一个自由分解。任何Abel群都有自由分解,例如把B取为由A的元素生成的自由Abel群记作F(A) ,C取为自然投影
的核记作
,得到的短正合序列
,就称为A的典范自由分解
(2)Ext函子(扩张函子):设Abel群A的典范自由分解为 ,由Hom函子导出的对偶序列
也是正合的,其中B为任意一个Abel群,
为 f, g 的对偶同态,把商群
记作 Ext(A, B) 。对任意两个Abel群同态
,同态
可以扩张成典范自由分解之间的同态
它与同态 一起生成由Hom函子导出的正合序列之间的同态,即下列图表交换
并且同态 是由
和所涉及的自由分解唯一确定的,它不依赖于
的选取
由此可知,Ext(A, B) 就是一个函子,它是Hom函子的导出函子,对第一个变量是反变的,对第二个变量是共变的。也即 Ext(A, -) 是共变函子,它是左正合函子 Hom(A,-) 的右导出函子,它把Abel群X指派为Abel群 Ext(A, X) ,把Abel群同态 指派为群同态
;而 Ext(-, B) 是反变函子,它是右正合函子 Hom(-, A) 的左出导函子,它把Abel群X指派为Abel群 Ext(X, B) ,把Abel群同态
指派为反向的群同态
通常也把 Ext(A, B) 称为B经由A扩张而成的群。
Ext函子的意义:
如果我们用一个群G从左边或右边Hom一个一般的短正合序列,所得到的序列可能不再是正合的,Ext函子某种意义上度量了使正合性失效的扩张程度
(3)Tor函子(挠积函子):设Abel群A的典范自由分解为 ,由张量积函子导出的序列
也是正合的,其中B为任意一个Abel群,把群
记作 Tor(A,B) 或者
。对任意两个Abel群同态
,同态
可以扩张成典范自由分解之间的同态
它与同态 一起生成由张量积函子导出的正合序列之间的同态,即下列图表交换
并且同态 是由
和所涉及的自由分解唯一确定的,它不依赖于
的选取。
记作
或者
由此可知, 就是一个函子,称为A和B的挠积,其结果是一个挠群,它是张量积函子
的导出函子,对两个变量都是共变的。它把Abel群X指派为Abel群
,把Abel群同态
指派为群同态
(4)链复形的张量积:设 是两个链复形,定义它们的张量积
是这样一个链复形,它的m维链定义为
。如果链群
都是域F上的向量空间,则也可以定义模的张量积
,它的m维链群是
;
边缘算子:定义为 ,可见
是集合
上的一个双线性函数,它诱导出张量积的同态。它满足性质
;
张量积的增广链复形:设 是增广链复形,用同态
来增广
,这里
是复合映射
,可以验证
是满射,而且
(5)同调叉积:设 是链复形,定义一个同态
为
,其中
是
的一个p维闭链,
是
的一个q维闭链,
是
的一个闭链。它是一个自然的单态射,即关于链映射是自然的,称为两个链复形(或者说是两个同调类)的同调叉积,可以记作
,其结果是一个p+q维的同调类;
拓扑空间的同调叉积:对拓扑空间X, Y,单态射 称为同调叉积,它等于复合映射
,其中
是由包含映射诱导的同调叉积,
是由Eilenberg-Zilber链同伦等价诱导的。叉积的行为有点类似于笛卡尔积,对两个同调类
,运算结果为一个p+q维同调类
(6)上链复形的张量积:设 是两个链复形,R是含幺交换环,则对应的上链复形为
,其张量积
是这样一个上链复形,它的m维上链群是
;
上边缘算子:
(7)上链叉积:设 是两个链复形,R是含幺交换环,同态
定义为
,约定
时
,
时
。同态
是一个自然的上链映射,称为上链的叉积,它对一个p维上链和一个q维上链,运算结果为一个p+q维上链。上链叉积也可以用R模同态来定义
。
上链叉积公式:对 ,有
;
上同调叉积:两个链复形的上同调叉积 定义为
,其中
分别是
的p维和q维上闭链,
是一个p+q维上闭链;
拓扑空间的上同调叉积:对拓扑空间X, Y,上链映射 称为上同调叉积,它等于复合映射
,其中
是由包含映射诱导的上同调叉积,
是由Eilenberg-Zilber链同伦等价诱导的。对两个上同调类
,运算结果为一个p+q维上同调类
。上同调叉积也可以用模同态来定义
(8)上同调环的张量积:给定拓扑空间X, Y,上同调环分别为 ,上同调环的张量积为
,其上积运算定义为
这样上同调环的张量积就赋予了环结构,构成一个新的上同调环
主要定理:
(1)Ext函子的性质:
;
;
若A是自由的,则 ;
若B是可除的,则
给定B,则有一个正合序列 ,可见
(2)上同调的万有系数定理:若 是自由链复形,G是Abel群,那么就有一个正合序列
,这是 k 是Kronecker映射。它是分裂的,但不是自然分裂,它关于链映射诱导的同态是自然的。对拓扑空间偶 (X, A),定理结论可以写成
。
该定理说明了带任意系数的上同调群与下同调群的关系,即 只依赖于
和
,而Kronecker映射的核为
,它只依赖于群
和G
(3)设 是自由链复形,
是链映射,如果诱导的下同调同态
对 i=p 和 i=p-1 是同构,那么诱导的上同调同态
也是同构
(4)设 是链复形,F是一个域,那么带F系数的上链群
和张量积
都是域F上的向量空间;带F系数的上同调群
和下同调群
也是F上的向量空间,并且它们互为对偶空间。如果A和B都是F上的向量空间,那么A到B的所有线性变换组成的群
也是F上的向量空间
(5)带域系数的同调与上同调的关系:若 是自由链复形,F是一个域,那么就是有一个自然的向量空间同构
,即向量空间
能以自然的方式等同于向量空间
的对偶空间
;
对拓扑空间偶 (X, A),定理结论可以写成 ,即向量空间
能以自然的方式等同于向量空间
的对偶空间
。当
是有限维时就有同构
,这个同构是非自然的。
例子:
在微分几何中处理紧致流形时通常使用实数域作为系数,这时同调向量空间与上同调向量空间是对偶的
(6)Tor函子的性质:
交换律: ;
双线性: ;
若A或B是无挠的,则 ;
给定B,则有一个正合序列 ,可见
(7)同调的万有系数定理:若 是自由链复形,G是Abel群,那么就有一个正合序列
,它是分裂的,但不是自然分裂,它关于链映射诱导的同态是自然的。对拓扑空间偶 (X, A),定理结论可以写成
。
该定理说明了带任意系数的同调群与整系数同调群的关系
(8)设 是自由链复形,
是链映射,如果诱导的同态
对 i=p 和 i=p-1 是同构,那么诱导的同态
对任意的G都是一个同构
(9)万有系数定理的对偶性:若 是自由链复形,G是Abel群,并且
在每一维数下的同调和上同调都是有限生成的,那么就有正合序列
它们是分裂的,但不是自然分裂,它们关于链映射诱导的同态是自然的。对拓扑空间偶,结论中把 换成 (X, A) 即可
推广:把 在每一维数下都是有限生成的条件改成在低于某个维数是零调的,则结论仍然成立
(10)链复形张量积的性质:
若 是链映射,那么映射的张量积
也是链映射;
两个自由链复形的张量积也是自由链复形。实际上,若 分别是
的一个基,那么
就是群
的一个基
(11)若K, L是单纯复形并且K是局部有限的,则 是一个正则CW复形,它是可三角剖分的,其中每一个胞腔
是一个子复形的可剖空间,设
是
的胞腔链复形,那么就有同构
。这说明张量积可用来计算积空间的同调
(12)链复形的Kunneth定理:若 是一个自由链复形,
是一个链复形,那么就有一个正合序列
它关于链映射诱导的同态是自然的,如果 也是自由的,那么这个序列是分裂的,但不是自然分裂。这里
是同调叉积。
该定理说明了张量积的同调群与每个链复形同调群的关系,可以用来计算两个链复形张量积的同调
(13)设 都是链映射,并且
是自由的,它们在所有维数下都诱导同调的同构,那么
在所有维数下均诱导同调的同构。
推论:若K, L是单纯复形并且K是局部有限的,则
(14)若链复形 的链群都是域F上的向量空间,边缘算子
是向量空间的线性变换,那么同调群
都是F上的向量空间,并且有向量空间的自然同构
(15)带域系数的Kunneth定理:若 是自由链复形,F是一个域,那么就有一个自然的同构
(16)Eilenberg-Zilber定理:对任意两个拓扑空间X, Y,都有链复形之间的链同伦等价 ,它关于由连续映射诱导的链映射是自然的。
这个链同伦等价公式:设 是投影映射,定义链映射
为
那么 v 是一个保持增广的自然链同伦等价。使用映射 v 和类似的公式可以定义它的链同伦逆映射
(17)拓扑空间的Kunneth定理:给定拓扑空间X, Y,那么就有一个正合序列
它关于由连续映射诱导的链映射是自然的,它是分裂的,但不是自然分裂。
带域系数的版本:若F是一个域,那么就有一个自然的向量空间同构
该定理描述了积空间的同调群与每个因子空间同调群的关系
(18)上同调的Kunneth定理:若 都是在低于某个维数时为零的自由链复形,并且在每一个维数下的同调群都是有限生成的,那么就有一个自然的正合序列
这个序列是分裂的,但不是自然分裂。
带域系数的版本:若F是一个域,那么就有一个自然的同构
(19)拓扑空间的上同调Kunneth定理:给定拓扑空间X, Y,若 对每一个 i 都是有限生成的,那么就有一个自然的正合序列
这个序列是分裂的,但不是自然分裂。
带域系数的版本:若F是一个域,那么就有一个自然的向量空间同构
(20)叉积的性质:
反交换性:如果 是颠倒坐标的映射,那么
;
结合律:在上同调群 中,有
(21)叉积与上积的关系(Lefschetz):设 是由 d(x)=(x,x) 给出的对角映射,诱导的上同调的同态为
,那么
这个关系说明了上同调具有环结构,而同调则没有这种结构。同调与上同调都有叉积,但只有在上同调中才有叉积与对角同态的复合运算
(22)积空间的上积计算:在上同调环 中,有
(23)上同调环的张量积:给定拓扑空间X, Y和含幺交换环R,它们的上同调环分别为 ,张量积为
,其上积运算定义为
这样上同调环的张量积就赋予了环结构,构成一个新的上同调环
(24)上同调环的Kunneth定理:给定拓扑空间X, Y,若 对每一个 i 都是有限生成的,那么整系数上同调环的叉积
是环的单同态。如果F是一个域,那么就有一个环同构
流形上的对偶
(1)复形的联接:设K,L是欧氏空间 中的复形,
是K的任意一般单形,
是L的任意一般单形,并且顶点
是相互独立的,令
表示它们所张成的单形,如果所有单形
和它们的面组成的集族是一个单纯复形,就把这个复形称为K和L的联接,记作
(2)设 是复形K中的一个单形
单形的星形 :单形 s 在复形K中的星形,是那些以 s 为面的所有单形的内部之并,记作 ,它是开集;
闭星形:是星形的闭包 ,它是复形K的以 s 为面的所有单形之并,也是K的一个子复形的可剖空间;
链环:集合 称为链环,记作
,它是K的在
中但不与 s 相交的所有单形之并,也是K的一个子复形的可剖空间。
(2)n维同调流形:对拓扑空间偶 (X, A) ,如果X的每一个不在A中的点x,局部同调群 当 i=n 时是无限循环群,当
时为零,就把拓扑空间偶 (X, A) 称为n维相对同调流形,A为空集时称为n维同调流形
例子:
同调流形是比拓扑流形更广泛的一类空间,任意n维拓扑流形M都是n维同调流形,另外也存在着不是拓扑流形的同调流形;
如果M是一个n维带边流形,那么偶 (M, Bd M) 是一个n维相对同调流形
(3)单形的对偶块:设X是一个局部有限的复形,sdX为它的首次重心重分。sdX的每个顶点均为X的某个单形的重心,因此可按X的单形的维数递增的次序对X的顶点赋予偏序,它在sdX的每个单形上诱导一个线性序,这样sdX的单形可以表示成 的形式,其中
。给定X的一个单形
,则sdX的所有以
为初始顶点的开单形之并恰好是
。而sdX的所有以
为最后一个顶点的开单形之并,称为对偶于
的块,记作
。它的作用类似于CW复形中的开胞腔的作用。把
的闭块
称为对偶于
的闭块,它等于sdX的所有以
为最后一个顶点的单形之并,它是 sdX 的一个子复形的可剖空间
(4)对偶链复形:
对偶块分解:设X是一个n维同调流形(这时它的每个复形必定是有限的),那么对每个对偶块 ,
都具有 n-k 维胞腔模其边缘的同调,把所有对偶块
组成的集族称为X的对偶块分解;
p维对偶骨架:把X的至多p维的对偶块之并,称为X的p维对偶骨架,记作 ,它是sdX的子复形的可剖空间;
p维对偶链群: ,它是
的一个自由Abel子群。注意当
时群
;
边缘算子: ,定义为复合映射
,其中同态
是包含映射
诱导的;
对偶链复形:把链复形 称为X的对偶链复形。对偶链复形的作用类似于胞腔链复形对CW复形起的作用
(5)卡积:设X是拓扑空间,R的含幺交换环,卡积是一个双线性映射 ,设
,则卡积定义为
称为p维上链对p+q维下链的卡积,结果为一个q维下链,它是 在
的后q维上的限制,系数为
在
的前p维上的赋值与系数
的乘积。注意如果是单纯复形,则可以简化为
同调群的卡积:链群的卡积诱导同调群的卡积 ;
相对卡积: ;
更一般的相对卡积: ,当
是一个切除对时,它有定义
(6)同调流形的定向:设X是一个可剖分的n维同调流形,如果能对X的所有n维单形 定向,使得它们的形式和
是一个闭链(当X是非紧致的时这个闭链可能是无穷的),则称X是可定向的,把该闭链
称为X的定向闭链;
相对同调流形的定向:设 (X,A) 是一个可剖分的n维相对同调流形,如果能对X的所有不在A中的n维单形 定向,使得它们的和
是 (X, A) 的闭链,则称 (X, A) 是可定向的,把该闭链
称为 (X, A) 的定向闭链
(7)定向类:设X是一个可剖分的n维同调流形, 是X的一个分支,如果X是可定向的,那么
是无限循环的,把该群的一个生成元
称为
的一个定向类。把各个类
在由包含映射诱导的同构
下的像称为X的一个定向类,记作
。如果X是不可定向的,那么定向类对系数群Z/2仍然有定义,即定向类
是
唯一的非平凡元,把这些定向类在
中的像记作
,称为X在Z/2上的一个定向类。
可由分支
的所有n维定向单形之和来表示,同调类
可由X的所有n维定向单形之和
来表示,因此定向类
定义了X的一种定向。类似地,
由X的带系数
的所有n维单形之和表示。
相对定向类:对可剖分的n维相对同调流形 (X, A) , 是 X-A 的一个分支,如果 (X, A) 是可定向的,那么
是无限循环的,把该群的一个生成元
称为
的一个定向类。把各个类
在由包含映射诱导的同构
下的像称为 (X, A) 的一个定向类,记作
。如果X是不可定向的,那么定向类对系数群Z/2仍然有定义,即定向类
是
唯一的非平凡元,把这些定向类在
中的像记作
,称为 (X, A) 在Z/2上的一个定向类
(8)流形定向的其他定义方式:
用局部同调群来定义:n维流形M的定向,是以连续的方式在M的每一点x处取定 的一个生成元,所取的这些生成元构成的集合就称为M一个定向。也即定向是一个映射
,对任意点
,S(x) 是
的一个生成元;对任意点x,存在邻域 U 及
的生成元 a ,使得对任意的点
,都满足 a 在包含映射诱导的同态
下的像恰好等于 S(y) ,这个条件是为了保证定向S的连续性;
曲线的定向:可以用曲线的走向或曲线的切向量来定义;
曲面的定向:欧氏空间 中曲面的定向可以用曲面的法向量给出。如果曲面的每一点处存在非零法向量,这样得到一个连续的法向量场,称这个曲面是可定向的。如果曲面上不存在处处非零的连续法向量场,则称曲面是不可定向的;
微分流形的定向:一个n维微分流形称为可定向的,如果它存在一个n次微分形式 在流形的每一点处都不为零,并且称这个流形由
定向,否则流形就是不可定向的。
可以证明,这些定义是等价的
(9)Riemann流形:在微分流形的每一个切空间、余切空间上以“可微的方式”定义度量,使它们都成为欧氏空间,这样的微分流形称为Riemann流形
(10)定向相反的映射:设 是紧致可定向的n维流形M的一个定向类,如果连续映射
使得诱导同态
是同构且
,则称 f 是使M定向相反的映射
(11)对偶配对:设A,B是相同秩的自由Abel群,C是无限循环群,如果同态 满足对A的基
和B的基
,
对所有 i,j=1,...,m 都成立,其中
是C的一个生成元,则称同态 f 是一个对偶配对
(12)保持对径点的映射(奇映射):点x的对径点为-x,连续映射 称为奇映射或保持对径点的映射,如果对所有
,有
(13)交积:设X是一个可剖分的、连通的n维紧致流形,R是含幺交换环,当X不可定向时令 ,给定p维和q维同调类
,而
是X的一个n维的定向类,选取上同调类
使得
那么定义同调类的交积为 ,交积结果的维数是 p+q-n ,结果的符号依赖于定向类
。交积表示这两个闭链的几何交
(14)同调交环:设X是一个可剖分的、连通的n维紧致流形,R是含幺交换环,当X不可定向时令 ,由庞加莱对偶同构
,可知上同调环诱导一个下同调环,称为X的同调环,其乘法就是两个同调类的交积
(15)Bockstein同态:设 是自由链复形,给定Abel群的短正合序列
,对相伴的两个短正合序列
根据之字形引理,可以得到两个同态
称为与系数群序列相伴的Bockstein同态,或者Bockstein运算,它们关于连续映射诱导的同态是自然的
(16)积邻域:设M是一个n维带边流形,如果有一个同胚 ,它的像是M中的一个开集,使得对每个
都有
,就称边界 BdM 在M中有一个积邻域。实际上这样的邻域总是存在的
(17)子复形的星形:设A是有限复形X的一个子复形的可剖空间,定义 是当
遍历X的位于A中的所有单形时,所有星形集合
的并,称为A在X中的星形;
性质:如果C是X的所有不与A相交的单形组成的集族,那么有 。如果A是X的一个满子复形的可剖空间,那么A是 St(A, X) 的形变收缩核
(18)多面体:设空间偶 (X, A) 是可剖分的,如果 ,并且存在 (X, A) 的某个剖分使得D是一个子复形的可剖空间,则称D是 (X, A) 中的多面体,若A为空集,则称D是X中的多面体
主要定理:
(1)复形联接存在的条件:设K,L是欧氏空间 中不相交的复形,如果
存在,那么
等于把
的点与
的点连接起来的所有线段之并,两条这样的线段至多相交于一个公共端点。反之,如果每一对连接
的点与
的点的线段至多相交于一个公共端点,那么
存在
(2)复形联接的性质:
设 都有定义,K是局部有限的,如果有同伦等价
,那么
;
交换律: ;
结合律: ;
(3)若 存在,
,那么对所有 i ,有约化同调的同构
(4)复形的局部同调群:设 s 复形K的一个k维单形, 是它的重心,那么当
时
,当
时
(5)可剖分空间的局部同调群: 设 (X, A) 是一个可剖分的n维相对同调流形,s 是X的一个不在A中的k维单形, 是它的重心,那么当
时有 k=n ,即
是无限循环群,其他情况为零;当
时它具有n-k-1维球面的同调,其中
,即
是无限循环群,其他情况下为零
(6)对偶块的性质:若X是一个局部有限的复形,由至多n维的单形和它们的面组成,设 是X的一个k维单形,那么X的各个单形的对偶块是互不相交的并且它们的并是
;
是sdX的一个 n-k 维子复形的可剖空间,
是所有以
为一个真面的单形
的对偶块
之并,并且这些块的维数低于 n-k ;
等于锥
;另外,如果在 i=n 时有
,在其他情况下为零,那么
具有 n-k 维胞腔模其边缘的同调
(7)Poincare对偶定理:设X是一个任意的n维闭流形(即紧致无边的流形),或者更一般的可剖分的n维紧致同调流形,如果X是可定向的,那么对所有的p和任意系数群或环G,都有同构 ;如果X是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构
;
非紧致流形的Poincre对偶定理:需要把上同调换成具有紧支集的上同调。设X是一个任意的n维流形,或者更一般的可剖分的n维同调流形,如果X是可定向的,那么对所有的p和任意系数群或环G,都有同构 ,
;如果X是不可定向的,那么那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构
,
,其中
表示具有紧支集的上同调,
表示基于无穷链的下同调。
庞加莱对偶定理是流形的同调及上同调的结构的基本定理
(8)Poincare对偶的推论:
如果X是一个可剖分的、连通的n维紧致同调流形,那么当X可定向时, 没有挠子群,并且对任意的G都有
,特别地
;当X不可定向时,
的挠子群是2阶的,并且对任意的G都有
,
,特别地有
,
;
如果X是一个可剖分的n维紧致同调流形,那么X是可定向的当且仅当对X的每一个分支 都有
,这说明X的可定向性不依赖于X的具体三角剖分
(9)卡积的性质:
边缘公式: ;
与上积的关系: ;
卡积是双线性的,并且在拓扑空间的连续映射下是自然的
(10)Poincare对偶定理(第二种形式):设X是一个任意的n维闭流形(即紧致无边的流形),或者更一般的可剖分的n维紧致同调流形,如果X是可定向的,并且 是X的一个定向类 ,那么对所有的p和任意系数群或环G,都有同构
;如果X是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构
(11)流形定向的性质:
如果流形M可定向,则M的任一开集也是可定向的;
M可定向当且仅当M的每一分支都可定向;
如果M,N是两个同胚的流形,则M可定向当且仅当N可定向;
设 是连通流形M的两个定向,如果有
满足
,则
,即对任意
,都有
,由此可知,流形的定向由它在一点处的定向决定;
如果连通的流形有定向,则它上面可以有两个不同的定向;
对不可定向的流形M,存在可定向的二重覆叠空间 ,如果M是连通的,则
也是连通的;
单连通的流形总是可定向的;
设S是n维流形M的一个定向,K是M中的一个紧致集,则 q>n 时有 ,并且存在唯一的同调类
,使得对任意
都有
,其中
是由包含映射决定的同态。同调类 a 称为M在K上定向类;
如果紧致无边的n维流形M是可定向的,则存在同调类 ,使得
给出M的一个定向,这里
是同态,这样的同调类 a 称为M的一个定向类;
如果紧致无边的n维流形M的同调群 ,则M是不可定向的;
设M是紧致可定向的n维流形, 的秩,即第p个Betti数记作
,则
;
如果M是奇数维的紧致可定向流形,则它的Euler示性数为0,即
(12)曲面和空间的可定向性:
穿孔球面 和与之同胚的欧氏空间
,都是可定向的;
Klein瓶是不可定向的曲面,其定向二重覆叠空间为环面 ;
Mobius带是不可定向的曲面;
奇数维实射影空间 是可定向的,偶数维实射影空间
是不可定向的,它的定向二重覆叠空间是同维数的球面;
所有复流形都是可定向的,因此复射影响空间 是可定向的;
n重射影平面 是不可定向的曲面;
n重环面 是可定向的曲面;
如果用整数模2的群Z/2做为同调群的系数,则任何n维流形都是Z/2可定向的
(13)在偶数维的复射影空间 上不存在使定向相反的同伦等价
(14)设X是一个可剖分的、可定向的、连通的n维紧致同调流形, 表示
的挠子群,那么整系数的上积运算
诱导一个同态
它是一个对偶配对
(15)设X是一个可剖分的、连通的n维紧致同调流形,F是一个域,如果X是不可定向的则假定F等于 Z/2 。设 生成
,那么就有向量空间
的基
和向量空间
的基
,使得对所有 i,j=1,...,m 都有
(16)上同调环的计算:
环面 :用
的生成元写出乘法表如下
Klein瓶S: 的乘法表如下
二重射影平面 :
,而
的乘法表如下
球面的积空间:设 是生成元,则
是秩为4的自由Abel群,以元素
为基,正维数元素的唯一非平凡积是
;
射影平面的积空间:设 是非零元,则向量空间
是9维的,基元素为0维的
,1维的
,2维的
,3维的
,4维的
;
实射影空间 :设
是非零元,那么
是
的非零元,因而上同调环
是Z/2上一个截断多项式代数(截断是指
),并且在一维时有一个生成元 u ;
无穷维实射影空间 :
是Z/2上的一个多项式代数
(17)保持对径点的必要条件:如果连续映射 是保持对径点的,则
(18)Borsuk-Ulam定理:若 是连续映射,则存在一点
使得
;
推论: 不能嵌入到
中,
的任何子集都不与
同胚;
推论:如果用 n+1 个开集来覆盖球面 ,那么其中一定有一个开集含有一对对径点(与博苏克-乌拉姆定理等价);
气象定理:任意时刻地球表面总有一对对径点处的温度和气压分别相等,这里假设温度和气压的变化是连续的。这是上述定理在n=2的情形
(19)火腿三明治定理:如果 是
中的有界可测集,则在
中存在一个 n-1 维超平面平分这些集合中的每一个,即每个集合都被平分成测度相等的两个子集。特别地,对
中两个有界多边形区域,在
中必存在一条直线平分这两个区域的每一个
推广(Gromov):一个n元不超过d次的多项式由 个参数决定。因此给定
个可测开集,存在某个由不超过d次的多项式定义的超曲面将这些集合一一平分。
(20)透镜空间的分类:两个透镜空间同伦等价 当且仅当
。两个透镜空间同胚
当且仅当
,并且
或者
。特别地,
(21)两个同伦等价的2维紧致流形一定是同胚的,但对3维及以上的紧致流形则不成立
(22)Lefschetz对偶定理:设 (X, A) 是一个任意的n维相对闭流形(即紧致无边的相对流形),或者更一般的可剖分的n维紧致相对同调流形,如果 (X, A) 是可定向的,那么对所有的p和任意系数群或环G,都有同构 ;如果X是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构
(23)Lefschetz对偶的推论:
如果 (X, A) 是一个可剖分的n维紧致相对同调流形,并且 X-A 是连通的,那么当 (X, A) 可定向时,对任意的G都有 ,特别地
;当 (X, A) 不可定向时,对任意的G都有
,
,特别地有
,
;
如果 (X, A) 是一个可剖分的n维紧致相对同调流形,那么 (X, A) 是可定向的当且仅当对 X-A 的每一个分支 都有
,这说明X的可定向性不依赖于 (X, A) 的具体三角剖分
(24)Poincare-Lefschetz对偶定理:设M是一个可剖分的n维紧致带边流形,并且 BdM 在M中有一个积邻域,如果 是可定向的,并且
是它的一个定向类 ,那么对所有的p和任意系数群或环G,都有同构
如果 是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构
(25)设M是一个可剖分的奇数维紧致带边流形,如果 BdM 是非空的,并且在M中有一个积邻域,那么向量空间 是偶数维的;
推论:2m维的实射影空间 不是 2m+1 维可部分紧致流形的边界;
推论:偶数维复射影空间 也不构成边界
(26)设M是一个可剖分的、可定向的n维紧致带边流形, 表示
的挠子群,那么整系数的上积运算
诱导一个同态
它是一个对偶配对
(26)Alexander对偶定理:如果A是球面 的一个子空间,
是可剖分的空间偶,即A是
中的多面体,那么就存在约化上同调与约化下同调的同构
,对偶地有另一个同构
;
球体的Alexander对偶定理:如果A是球体 的一个子空间,
,
是可剖分的空间偶,那么就有同构
(27)广义Jordan曲线定理:如果C是 中任意同胚于
的子空间,那么
恰好有两个连通分支
,C是这两个分支的公共拓扑边界,即
。特别地,
中的一条简单闭曲线C恰好将
分离成两个连通分支,并且C是它们的公共边界
Cech上同调
(1)有向集:一个有向集 A 是带有二元关系 ≤ 的集合,满足自反性,即对所有的 x∈A ,x ≤ x 成立;传递性,即 x ≤ y,y ≤ z 蕴涵着 x ≤ z ;上界性,即给定x, y,则存在 z 使得 x ≤ z,y ≤ z,元素 z 称为 x,y的上界。
例子:
全序集在关系 ≤ 下是有向集;
拓扑空间X的开覆盖在加细关系是有向集。即 是X的一个开覆盖,开覆盖
是
的加细,则
,这样的关系构成有向集
(2)Abel群范畴中的有向系:设J是有向集,一个由Abel群和同态组成的有向系,是Abel群的加标族 ,连同对每对指标
都有定义的一族同态
,它满足
是恒等同态,如果
,那么
,即下述图表交换
(3)方向极限:给定Abel群和同态的一个有向系 ,如果任意两个元素
对
的某个上界
有
,即它们被同态映射到同一个元素,则定义等价关系
,有向系的方向极限是这些等价类
组成的集合,记作
。定义等价类的加法
,则方向极限是一个Abel群
(4)有向系的映射:设J,K是两个有向集, 和
是两个Abel群和同态的有向系,有向系之间的映射
,首先包括一个保持序关系的有向集映射
,其次对每一个
,都有两个有向系之间一个群同态
,并且使得下述图表交换,其中
这样的有向系映射 诱导它们方向极限之间的一个同态
,把它称为同态
的方向极限,它把
的等价类映射到
的等价类
(5)有向集的共尾:设J是有向集,A是J的子集,如果对每个 ,都存在
满足
,则称 A 在 J 中是共尾的
(6)q-单形:设 I 是有向索引集, 是拓扑空间X的一个开覆盖,
是X上的一个Abel群预层,
中的一个抽象q-单形记作
,是从
中选出的 q+1 个集合组成的有向集,使得这些集合的交集非空,这个交集称为q-单形的支撑,记作
,这些选出的集合称为q-单形的顶点;
神经(单纯复形):是开覆盖 的一个抽象单纯复形,记作
,它的顶点是
中的元素,它的单形包括
中的所有有限单形,即所有有限子索引集
确定的各个单形。因此
的一个神经可以写成以下形式
由此可知,神经 可能是单例集,即单个索引标记的所有非空的
,二元组集合即两个索引标记的所有交集非空的二元组
,三元组,等等。如果有向索引集 J 属于神经
,那么它的子集也属于这个神经;
边缘算子:q-单形 的第 j 个部分边缘是移除
的第 j 个集合所得的 (q-1)-单形,即
,所有部分边缘的交错和,就是
的边缘,即
,它是一个(q-1)-单形链,构成一个神经,是
的所有神经构成的自由Abel群
中的一个元素
(7)q-上链:设 I 是有向索引集, 是拓扑空间X的一个开覆盖,
是X上的一个Abel群预层,
的一个带
中系数的q-上链是一个映射
,它把每个q-单形
映射到Abel群
中的一个元素;
q-上链群:把所有q-上链构成的集合记作 ,称为q维上链群,按上链的加法它构成一个Abel群;
上边缘算子(微分算子): ,定义为把每个q-上链
映射为(q+1)-上链,即对任意q-单形
都有
其中 是从
到
的限制映射。类似地有性质
。上边缘算子类似于de Rham上同调中的外微分算子(外导数),因此有时也称上链复形的微分算子;
Cech上链复形:由上链群和上边缘算子构成的上链复形,记作
(8)q-上闭链:一个 q-上链 是上闭链,如果对所有的q-单形
满足闭链条件
q-上闭链是上边缘算子的核中的元素。例如,一个 0-上闭链 f 是 的局部截面的集合,这些截面在每个相交处满足兼容性关系,即对每个相交的集合
都有
。一个 1-上闭链 f 满足对每个具有非空交集
的集合
,都有
;
q-上闭链群: ,它是上链群的Abel子群;
q-上边缘链:一个 q-上链 是上边缘链,如果它是某个(q-1)-上链在上边缘算子
作用下的像。q-上边缘链是上边缘算子的像中的元素。例如,一个 1-上链 f 是上边缘链,如果存在某个0-上链 h ,使得对每个相交的集合
都有
;
q-上边缘链群: ,它是上闭链群的Abel子群
(9)开覆盖的Cech上同调群:设 I 是有向索引集, 是拓扑空间X的一个开覆盖,
是X上的一个Abel群预层,则
的q维Cech上同调群定义为Cech上链复形
的上同调群
(10)单纯映射:对拓扑空间X,若开覆盖 是
的加细,定义顶点映射
为,g(B) 是
的一个包含B的元素,如果
是
的一个单形,那么
就是
的一个单形。这样它诱导一个单纯映射
,称为加细开覆盖之间的单纯映射;
加细诱导的同态:加细开覆盖的单纯映射 ,确定唯一的两个带G系数的同态
,
,它们是由对所有
满足条件
的单纯映射 g 诱导的,称为由加细诱导的同态
(11)拓扑空间的Cech上同调群:设拓扑空间X的开覆盖在加细关系下构成的有向集为 J , X上的一个Abel群预层为 ,用下述方法构造上同调群的有向系,对 J 中的元素
指派上同调群
,对序偶
指派由加细诱导的同态
,这个有向系的方向极限就是X的带
中系数的k维Cech上同调群
类似地把X的约化Cech上同调群定义为约化上同调群 的方向极限。注意若
是一个由Abel群G确定的常值层
,则Cech上同调群记作
。
Cech上同调群只依赖于X的开覆盖族,所有它们是X的拓扑不变量
主要定理:
(1)如果 是一个Abel群和同态的有向系,A在J中是共尾的,那么A是一个有向集,并且包含映射诱导方向极限的同构
(2)Cech上同调的连续性:若Y是正规空间X的一个紧致子空间,Y的覆盖 在加细关系下构成的有向集为 L,这些覆盖中的集合在X中(而不是在Y中)是开的,那么
。一般地,若X是一个可剖分的紧致空间,
是X中的多面体序列,其交是Y,那么
,同样的结果对约化上同调也成立
(3)Cech上同调与其他上同调的关系:
如果拓扑空间X同伦等价于一个单纯复形,则Cech上同调 自然同构于单纯上同调
;
如果X同伦等价于一个CW复形,则Cech上同调 自然同构于奇异上同调
;
如果X是一个微分流形,则则Cech上同调 自然同构于de Rham上同调
;
如果X是一个微分流形,它的开覆盖 是一个良好的覆盖,即所有的集合
都可以收缩成一点,所有
中集合的有限交是空集或者可以收缩成一点,则Cech上同调
自然同构于de Rham上同调
;
对于行为欠佳的空间,Cech上同调不同于奇异上同调。例如若X是拓扑学家的封闭正弦曲线 ,则
,而
(4)Alexander-Pontryagin对偶定理:如果A是球面 的闭的非空真子集,那么就存在约化Cech上同调与约化奇异下同调的同构
(5)广义Jordan曲线定理:如果M是一个可剖分的 n-1 维连通紧致流形,并且可以嵌入到 中,即存在嵌入
,那么M是可定向的,并且
恰好有两个道路连通分支
,h(M) 是这两个分支的公共拓扑边界,即
参考书籍:
(1)代数拓扑基础:James R.Munkres