拓扑--代数拓扑3

上同调


(1)同态Abel群:设A, G都是Abel群,假如A到G的两个同态相加是通过把它们在G中的值相加来实现,那么A到G的所有同态的集合 Hom(A, G) 就是一个Abel群;

性质:Hom(Z,G) \cong G ,这个同构把同态 \phi: Z \to G 映为元素 \phi(1) 

推广:如果A是以 e_{1},...,e_{n} 为基的一个有限秩的自由Abel群,那么 Hom(A,G) \cong \bigoplus_{i=1}^{n}G ,这个同构把同态 \phi: A \to G 映为元素 (\phi(e_{1}),...,\phi(e_{n})) 

(2)对偶同态(共轭同态):同态 f: A \to B 引出一个反向的同态 \widetilde{f}: Hom(B,G) \to Hom(A,G)  ,称为 f 的对偶同态。显示 \widetilde{f}(\phi)=\phi \circ f 

(3)Hom函子:设 \mathcal{C} 为局部小范畴,Set为集合范畴。对 \mathcal{C} 中的一个固定对象A,选择另一个对象X,态射集合 Hom(A, X) 是Set范畴中的一个对象,当A固定而X变化时 Hom(A, X) 也会在Set中变动,因此构造了一个范畴之间的映射,它把 \mathcal{C} 中的对象X映到Set中的对象Hom(A, X);取 \mathcal{C} 的一个态射 f: X \to Y,它必须要映到Set中的函数 Hom(A,X) \to Hom(A,Y) ,这个函数怎么定义?取 h \in Hom(A,X) ,显然 f \circ h = g: A \to Y,它正好把 h \in Hom(A,X) 对应到了 g \in Hom(A,Y) ,把这个函数记为 Hom(A,f): h \to f \circ h,它在h上的行为是 Hom(A,f) h=f \circ h。因此映射把 \mathcal{C} 中的态射 f: X \to Y 映为Set中的函数 Hom(A,f): h \to f \circ h ,这样的映射就称为关于A的Hom函子或态射函子,记作 Hom(A,-): \mathcal{C} \to Set ,或者 \mathcal{C}(A,-): \mathcal{C} \to Set 

反变Hom函子:对偶地定义函子 \mathcal{C}(-,A): \mathcal{C}^{op} \to Set,称为关于A的反变Hom函子。它把对象X指派为集合 Hom(X, A) ,把 f: X \to Y 指派为反向的函数 g: Hom(Y,A) \to Hom(X,A) ,即 Hom(f,A): h \to h \circ f ;

双Hom函子:\mathcal{C}(-,-): \mathcal{C}^{op} \times C \to Set ;

上述是一般的Hom函子定义。取 \mathcal{C} 为Abel群范畴,对于固定的G,同态集合 Hom(X, G) 上定义同态之间的加法是把它们在G中的值相加来实现,Hom(X, G) 成为Abel群,这是我们这里要研究的Hom函子,即Abel群范畴到自身的反变Hom函子 Hom(-,G): (AbGrp)^{op} \to AbGrp ,它把Abel群X指派为Abel群 Hom(X, G) ,把同态 f: X \to Y 指派为反向的对偶同态 \widetilde{f}:Hom(Y,G) \to Hom(X,G) ,这说明Hom函子对第一个变量是反变的。若把X指派为 Hom(G,X) ,把 f: X \to Y 指派为同向的同态 g:Hom(G,X) \to Hom(G,Y) ,则称为协变Hom函子 Hom(G,-): AbGrp \to AbGrp ,也即Hom函子对第二个变量是协变的

(4)可除群:设G是Abel群,如果对每个 x \in G 和每个整数n,都存在 y \in G 使得 ny=x ,则称Abel群G是可除的。例如有理数在加法运算下形成一个可除群

(5)单纯上同调群:K是一个复形,G是一个Abel群

带G中系数的p维上链群:定义为 C^{p}(K;G)=Hom(C_{p}(K),G) ,它是自由Abel群,当G是整数群Z时,在记号中可省略它;

带G中系数的上边缘算子:\delta_{p}: C^{p}(K;G) \to C^{p+1}(K;G) ,它将维数提升1维,它是边缘算子 \partial_{p+1}: C_{p+1}(K) \to C_{p}(K) 的对偶。有性质 \delta_{p} \circ \delta_{p-1}=0

带G中系数的p维上闭链群:Z^{p}(K;G)=ker \, \delta_{p} ;

带G中系数的p维上边缘链群:B^{p}(K;G)=im \, \delta_{p-1} ,它是 Z^{p}(K;G) 的Abel子群;

带G中系数的p维上同调群:H^{p}(K;G)=Z^{p}(K;G)/B^{p}(K;G) ;

p维上链:一个p维上链 c \in C^{p}(K) ,是一个同态 c: C_{p}(K) \to Z ,它把任意p维下链 z=\sum n_{i}\sigma_{i} \in C_{p}(K) 映射为Z中的一个整数,称为上链c对下链z的取值,记作 \left \langle c,z \right \rangle=\sum n_{i}\left \langle c, \sigma_{i} \right \rangle \in Z ,这是双线性记号。设 \sigma_{i}^{\ast} 表示基本下链 \sigma_{i} (是一个p维定向单形)对应的基本上链,即 \sigma_{i}^{\ast} 在基元 \sigma_{i} 上取值为1,在其他基元上取值为0,则一个p维上链可表示为 c=\sum n_{i}\sigma_{i}^{\ast} 。

p维上闭链:对 x \in C^{p}(K) ,如果 \delta_{p}(x)=0 ,则称 x 为K上的一个p维单纯上闭链;

p维上边缘链:对 x \in C^{p}(K) ,如果存在 y \in C^{p-1}(K) ,使得 x=\delta_{p-1}(y) ,则称 x 为K上的一个p维单纯上边缘链;

上链映射:单纯映射 f:K \to L 诱导链映射 f_{\sharp}: C_{p}(K) \to C_{p}(L) ,它的对偶 f^{\sharp}: C^{p}(L;G) \to C^{p}(K;G) 称为上链映射,其诱导上同调群的同态为 f^{\ast}: H^{p}(L;G) \to H^{p}(K;G) ,可见上同调群 \left \{ H^{p} \right \} 是一族反变函子;

上增广同态:给定复形K,标准增广同态序列 C_{1}(K) \overset{\partial_{1}}{\rightarrow} C_{0}(K) \overset{\varepsilon}{\rightarrow} Z \to 0 的对偶序列为 0 \to G \overset{\widetilde{\varepsilon}}{\rightarrow} C^{0}(K;G) \overset{\delta_{0}}{\rightarrow} C^{1}(K;G) ,得到一个同态 \widetilde{\varepsilon} ,称为上增广同态,它是单射,并且 \delta_{0} \circ \widetilde{\varepsilon}=0 ;

约化上同调群:定义为 \widetilde{H}^{0}(K;G)=ker \, \delta_{0}/im \, \widetilde{\varepsilon} ,当 p>0 时 \widetilde{H}^{p}(K;G)=H^{p}(K;G) 

(6)相对单纯上同调群:K_{0} 是复形K的一个子复形,G是一个Abel群

p维相对上链群:C^{p}(K, K_{0};G)=Hom(C_{p}(K,K_{0}),G) ;

相对上边缘算子:\delta_{p}: C^{p}(K,K_{0};G) \to C^{p+1}(K,K_{0};G) ,它将维数提升1维,它是相对边缘算子 \partial_{p+1}: C_{p+1}(K,K_{0}) \to C_{p}(K,K_{0}) 的对偶。有性质 \delta_{p} \circ \delta_{p-1}=0

p维相对上闭链群:Z^{p}(K,K_{0};G)=ker \, \delta_{p} ;

p维相对上边缘链群:B^{p}(K,K_{0};G)=im \, \delta_{p-1} ,它是 Z^{p}(K,K_{0};G) 的Abel子群;

p维相对上同调群:H^{p}(K,K_{0};G)=Z^{p}(K,K_{0};G)/B^{p}(K,K_{0};G) 

上链映射:单纯映射 f:(K,K_{0}) \to (L,L_{0}) 诱导链映射 f_{\sharp}: C_{p}(K,K_{0}) \to C_{p}(L,L_{0}) ,它的对偶 f^{\sharp}: C^{p}(L,L_{0};G) \to C^{p}(K,K_{0};G) 称为上链映射,其诱导上同调群的同态为 f^{\ast}: H^{p}(L,L_{0};G) \to H^{p}(K,K_{0};G)

(8)奇异上同调群:(X, A) 为拓扑空间偶,A为X的子空间,G是一个Abel群

p维奇异上链群: S^{p}(X,A;G)=Hom(S_{p}(X,A),G) ,它是自由Abel群,当G是整数群Z时,在记号中可省略它,A为空集时就是X的奇异上链群,即 S^{p}(X;G)=Hom(S_{p}(X),G)

上链:p维奇异上链是奇异下链群到系数群G的一个同态 x^{p}: S_{p}(X) \to G ,它把任意p维奇异下链 y_{p}=\sum n_{i}T_{i} \in S_{p}(X) 的映射为G中的一个元素,称为上链 x^{p} 对下链 y_{p} 的取值,记作 \left \langle x^{p},y_{p} \right \rangle=\sum n_{i}\left \langle x^{p}, T_{i} \right \rangle \in G ,其中 T_{i}: \Delta_{p} \to X 是所有的p维奇异单形,这是双线性记号,而 T_{i}^{\ast}=\left \langle x^{p},T_{i} \right \rangle 称为基本上链,即 T_{i}^{\ast} 在基元 T_{i}: \Delta_{p} \to X 上取值为1,在其他基元上取值为0,因此上链也可以写成 x^{p}=\sum n_{i}T_{i}^{\ast} ;

赋值算子:即上链对下链的取值,它是双线性的映射 \left \langle , \right \rangle : S^{p}(X) \times S_{p}(X) \to G ,即固定一个分量时对另一个分量的映射是线性的;

上链的性质:

 \left \langle \delta_{p}S^{p}, S_{p+1} \right \rangle=\left \langle S^{p},\partial_{p+1}S_{p+1} \right \rangle ,对单纯上链则为 \left \langle \delta_{p}C^{p}, C_{p+1} \right \rangle=\left \langle C^{p},\partial_{p+1}C_{p+1} \right \rangle ;

对于 c_{1},c_{2} \in S^{p}(X), z \in S_{p}(X) ,有 c_{1}+c_{2} \in S^{p}(X), \, \left \langle c_{1}+c_{2},z \right \rangle=\left \langle c_{1},z \right \rangle + \left \langle c_{2},z \right \rangle ;

上边缘算子:\delta_{p}: S^{p}(X,A;G) \to S^{p+1}(X,A;G) ,它将维数提升1维,它是边缘算子 \partial_{p+1}: S_{p+1}(X,A) \to S_{p}(X,A) 的对偶。有性质 \delta_{p} \circ \delta_{p-1}=0

p维奇异上闭链群:Z^{p}(X,A;G)=ker \, \delta_{p} ;

p维奇异上边缘链群:B^{p}(X,A;G)=im \, \delta_{p-1} ,它是 Z^{p}(X,A;G) 的Abel子群;

p维奇异上同调群:H^{p}(X,A;G)=Z^{p}(X,A;G)/B^{p}(X,A;G) 。A为空集时就是拓扑空间X的上同调群,即 H^{p}(X;G)=Z^{p}(X;G)/B^{p}(X;G)

上链映射:连续映射 f:(X,A) \to (Y,B) 诱导链映射 f_{\sharp}: S_{p}(X,A) \to S_{p}(Y,B) ,它的对偶 f^{\sharp}: S^{p}(Y,B;G) \to S^{p}(X,B;G) 称为上链映射,其诱导上同调群的同态为 f^{\ast}: H^{p}(Y,B;G) \to H^{p}(X,A;G) ,可见上同调群 \left \{ H^{p} \right \} 是一族反变函子;

联系同态:\delta^{\ast}: H^{p}(A) \to H^{p+1}(X,A) ,它是由上边缘算子 \delta_{p}: S^{p}(X,A;G) \to S^{p+1}(X,A;G) 诱导的;

上增广同态:标准增广同态序列 S_{1}(X) \overset{\partial_{1}}{\rightarrow} S_{0}(X) \overset{\varepsilon}{\rightarrow} Z \to 0 的对偶序列为 0 \to G \overset{\widetilde{\varepsilon}}{\rightarrow} S^{0}(X;G) \overset{\delta_{0}}{\rightarrow} S^{1}(X;G) ,得到一个同态 \widetilde{\varepsilon} ,称为上增广同态,它是单射,并且 \delta_{0} \circ \widetilde{\varepsilon}=0 ;

约化奇异上同调群:定义为 \widetilde{H}^{0}(X;G)=ker \, \delta_{0}/im \, \widetilde{\varepsilon} ,当 p>0 时 \widetilde{H}^{p}(X;G)=H^{p}(X;G) 

(9)上链复形:与链复形对偶的概念。一个上链复形 \mathcal{C}=\left \{ A_{n},d_{n} \right \} 是Abel群或模范畴上的一个连通序列,即对象序列通过一系列同态相连,使得每两个连接的映射的复合为零 d_{n+1}d_{n}=0 。写成如下形式

0 \to A_{0} \overset{d_{0}}{\rightarrow} A_{1} \overset{d_{1}}{\rightarrow} A_{2} \to ... \to A_{n-1} \overset{d_{n-1}}{\rightarrow} A_{n} \overset{d_{n}}{\rightarrow} A_{n+1} \to ...

上链复形的上同调群:定义为 H^{n}(\mathcal{C})=Ker(d_{n})/Im(d_{n-1}) 。当所有上同调群为零时,此上链复形为正合的。

例子:

单纯上链复形:0 \to C^{0}(K;G) \overset{\delta_{0}}{\rightarrow} C^{1}(K;G) \to ... ,记作 \mathcal{C}(K)=\left \{ C^{p}(\mathcal{C};G), \delta_{p} \right \}

奇异上链复形:0 \to S^{0}(X;G) \overset{\delta_{0}}{\rightarrow} S^{1}(X;G) \to ... ,记作 \mathcal{C}(X)=\left \{ S^{p}(\mathcal{C};G), \delta_{p} \right \}

增广奇异上链复形:0 \to G \overset{\widetilde{\varepsilon}}{\rightarrow} S^{0}(X;G) \overset{\delta_{0}}{\rightarrow} S^{1}(X;G) \to .. ,记作 \left \{ \mathcal{C}(X), \widetilde{\varepsilon} \, \right \}

上链复形的约化上同调群:对增广的上链复形 0 \to G \overset{\widetilde{\varepsilon}}{\rightarrow} S^{0}(X;G) \overset{\delta_{0}}{\rightarrow} S^{1}(X;G) \to .. ,定义约化上同调群为 \widetilde{H}^{0}(\mathcal{C};G)=ker \, \delta_{0}/im \, \widetilde{\varepsilon} ,当 p>0 时 \widetilde{H}^{p}(\mathcal{C};G)=H^{p}(\mathcal{C};G) ;

(10)上链映射:两个上链复形 \mathcal{C}=\left \{ A^{n},d_{A}^{n} \right \} 和 \mathcal{D}=\left \{ B^{n},d_{B}^{n} \right \} 之间的链映射 f: \mathcal{C} \to \mathcal{D} ,是一族同态 f^{n}:A^{n}\rightarrow B^{n} ,使之满足 f^{n+1}\circ d_{A}^{n}=d_{B}^{n}\circ f^{​{n}} 。它诱导上同调群的同态为 f^{\ast}: H^{n}(\mathcal{C};G) \to H^{n}(\mathcal{D};G) 。如果是增广的上链复形,则链映射也要保持增广,它诱导约化上同调群的同态 f^{\ast}: \widetilde{H}^{n}(\mathcal{C};G) \to \widetilde{H}^{n}(\mathcal{D};G) ;

上链同伦:两个链映射 f,g: \mathcal{C} \to \mathcal{D} 称作是同伦的,当且仅当存在一族同态 D^{k}:A^{k}\rightarrow B^{​{k-1}} 使得 d_{B}^{​{k-1}} \circ D_{k}+D_{​{k+1}} \circ d_{A}^{k}=f^{k}-g^{k} ,可用下列交换图表示

上链同伦等价:对一个上链映射 f: \mathcal{C} \to \mathcal{D} ,如果存在一个上链映射 g: \mathcal{D} \to \mathcal{C} 使得 g \circ f, \, f \circ g 分别链同伦于 \mathcal{C}, \, \mathcal{D} 上的恒等映射,即 g \circ f \simeq id_{C}, \, f \circ g \simeq id_{D} ,则称上链映射 f 是一个上链等价,g 称为 f 的上链同伦逆

(11)Abel群的自由分解:把Abel群的短正合序列 0 \to A \to B \to C \to 0 ,其中A, B是自由的,称为Abel群C的一个自由分解。任何Abel群都有自由分解,例如把B取为由C的元素生成的自由Abel群,A取为自然投影 B \to C 的核,这就是C的典范自由分解

(12)映射柱:给定拓扑空间的连续映射 h: X \to Y ,对 X \times I 和Y的不交并 X \times I \cup Y ,通过把 X \times 0 的每一点 (x, 0) 与Y的点 h(x) 等同起来,而得到的粘着空间 Y^{'} 称为h的映射柱,商映射记作 \pi: (X \times I) \cup Y \to Y^{'} ,它在Y上的限制是一个从Y到 Y^{'} 的嵌入 j: Y \to Y^{'} ,而 i(x)=\pi(x,1) 是X到 Y^{'} 的嵌入

(13)赋值映射:如果 \mathcal{C}=\left \{ S_{i}, \partial \right \} 是一个链复形,那么就有一个映射 Hom(S_{p},G) \times S_{p} \to G ,它把上链与下链的偶 (x^{p},y_{p}) 映射成G的元素 \left \langle x^{p},y_{p} \right \rangle ,即上链对下链的取值,它是双线性映射,把它称为赋值映射;

Kronecker指标:链复形的赋值映射 Hom(S_{p},G) \times S_{p} \to G 诱导的双线性映射 H^{p}(\mathcal{C};G) \times H_{p}(\mathcal{C}) \to G ,即上同调群与下同调群到系数群的双线性映射,称为Kronecker指标。它是上同调类对下同调类的赋值运算,同样用 \left \langle x^{p},y_{p} \right \rangle 表元素 x^{p} 和 y_{p} 在这个映射下的像。对于拓扑空间X,Kronecker指标记作 H^{p}(X;G) \times H_{p}(X) \to G ;

Kronecker映射k: H^{p}(\mathcal{C};G) \to Hom(H_{p}(\mathcal{C}),G) ,定义为 (kx^{p})(y_{p})=\left \langle x^{p},y_{p} \right \rangle ,它是一个同态,并且是自然的。对拓扑空间X,Kronecker映射记作 k: H^{p}(X;G) \to Hom(H_{p}(X),G)  

(15)外积运算(楔积):微分之间的外积运算,外积运算法则

结合律:dx \wedge (dy \wedge dz)=(dx \wedge dy) \wedge dz

分配律:(dx + dy) \wedge dz=dz \wedge dz+dy \wedge dz

反对称性(反交换性):dx\wedge dy=-dy\wedge dx,从而可得 dx\wedge dx=dy\wedge dy=0

数乘运算:(fdx) \wedge dy = f(dx \wedge dy)

(16)微分形式(外微分形式):由微分的外积和函数组成的线性组合称为微分形式。

设P, Q, R, A, B, C, H都为x, y, z的函数,则

\omega=Pdx+Qdy+Rdz 称为一阶微分形式(一阶没有乘积,与普通的微分形式是一样的);

\omega=Ady \wedge dz+Bdx \wedge dz+Cdx \wedge dy 称为二阶微分形式;
\omega=Hdx \wedge dy \wedge dz 称为三阶微分形式

特别地,函数f称为零阶微分形式,P, Q, R, A, B, C, H称为微分形式的系数。

微分形式的外积运算:满足分配律,结合律,和反交换律,即对p阶微分形式和q阶微分形式有 \lambda \wedge \mu =(-1)^{pq} \mu \wedge \lambda

(17)外微分算子(外导数):把一个函数的微分概念推广到更高阶微分形式的微分。设 f(x_{1},...,x_{n}) 是 R^{n} \to R 的函数,对 R^{n}上的k阶微分形式 \omega=\sum_{j \in I(n,k)}f_{j}dx_{j},定义其外微分运算d是R^{n}上的k+1阶微分形式

d\omega=\sum_{j \in I(n,k)}(\sum_{i=1}^{n}\frac{\partial f_{j}}{\partial x_{i}}dx_{i} \wedge dx_{j}),其中指标集I(n,k)是自然数中基数为k的有序子集

外微分算子是线性算子,它就是微分形式的上边缘算子。注意外微分算子和普通微分算子运算方式相同,唯一的不同就是外微分算子运算后进行外积,而普通微分算子运算后进行正常的乘积。

例子:

0阶微分形式:就是函数本身即 \omega =f,其外微分就是全微分运算 d\omega =df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz,这表明外微分与全微分对d的定义兼容;

1阶微分形式:\omega=Pdx+Qdy+Rdz,其外微分为 d\omega=dP \wedge dx+dQ \wedge dy+dR\wedge dz ;

2阶微分形式:\omega=Ady \wedge dz+Bdx \wedge dz+Cdx \wedge dy,其外微分为 d\omega=dA \wedge dy \wedge dz+dB \wedge dx \wedge dz+dC \wedge dx \wedge dy ;

3阶微分形式:\omega=Hdx \wedge dy \wedge dz,其外微分为 d\omega=dH \wedge dx \wedge dy \wedge dz

(18)De Rham上同调群:设M是一个n维的微分流形

k阶微分形式群: M上可微的k阶微分形式的集合记作 A^{k}(M) ,k=0时 A^{k}(M) 是M上的可微函数集合,k<0或k>n时 A^{k}(M)=0 。A^{k}(M) 关于微分形式的加法构成Abel群,A^{k}(M) 自然地成为实数域R上的无穷维向量空间;

外微分算子(边缘算子):可以写成 d: A^{k}(M) \to A^{k+1}(M) ,因此外微分算子是上边缘算子,并且有性质 d \circ d=0 ;

k阶闭形式群:Z^{k}(M)=\left \{ \xi \in A^{k}(M) \,|\, d\xi=0 \right \} ,满足 d \xi = 0 的微分形式 \xi 称为M上的k阶闭形式;

k阶恰当形式群:B^{k}(M)=\left \{ d \eta \,|\, \eta \in A^{k-1}(M) \right \}  ,对k阶微分形式 \omega \in A^{k}(M) ,若存在k-1阶微分形式 \eta \in A^{k-1}(M) 使得 \omega=d \eta ,则称 \omega 为M上的k阶恰当形式。恰当形式必然是闭形式,反之则不成立;

k阶De Rham上同调群:H_{DR}^{k}(M)=Z^{k}(M)/B^{k}(M) ,即闭形式模掉恰当形式构成的商群;

De Rham复形:上链复形 0 \to A^{0}(M) \overset{d}{\rightarrow} A^{1}(M) \to ... \to A^{k}(M) \overset{d}{\rightarrow} A^{k+1}(M) \to ... \to A^{n}(M) \to 0 称为De Rham复形;

De Rham上同调类:称 A^{k}(M) 中的两个闭形式 \alpha, \beta 是上同调的,如果它们相差一个恰当形式,即 \alpha - \beta 是恰当形式,它们属于同一个上同调类,记作 [\alpha] 。De Rham上同调群中的元素就是各个上同调类,de Rham上同调的想法就是给一个流形上不同类型的闭形式分类,相差一个恰当形式的两个闭形式属于同一个同调类

(19)环:集合R上附加两个运算加法和乘法组成的代数结构 R(+,\cdot ) ,满足加法交换群(结合律、幺元、逆元、交换律)、乘法结合律、分配律,共6条公理

交换环:满足乘法交换律的环

幺环:含乘法幺元的环

零环:只含有一个元素(必为0)的环

子环:环R的子集S,在环的两个运算下也构成环,记作 S(+,\cdot ) 

逆元:幺环中的元素a若有逆元(ba=ab=1),则b为a的逆元,记为 a^{-1} 。幺环的可逆元全体构成乘法群,记作 R^{\times } 。

零因子:存在 b \in R \backslash \left \{ 0 \right \} 使得 ba=0或ab=0,则称a是R中的一个零因子。幺环的零因子不是可逆元。

整环:无零因子的交换幺环(共9条公理)。无零因子的限制是为了满足消去律,消去律与无零因子是等价的概念。

除环(体):每个非零元都有逆元的幺环称为除环或称为体,即加法交换群+非零元乘法群+分配律。注意除环不一定满足乘法交换律,例如Hamliton四元数体。

单环:没有非平凡理想的环

常见的环:整数环 (Z,+,\times ) 、一元多项式环 K[x] 、多元多项式环 K[x_{1},...,x_{n}] 、域K上的全矩阵非交换环 M_{n}(K)

(20)环同态:环同态是保持环运算结构的映射,即 \varphi (a+b)=\varphi (a)+\varphi (b),\,\varphi(ab)=\varphi(a)\varphi(b) 。若即是单射又是满射,则称为环同构,记作 R_{1}\cong R_{2} 

(21)域:每个非零元都有乘法逆元的交换幺环,记作 (F,+,\cdot ) 。即加法交换群+非零元乘法交换群+分配律(共9条公理)

(22)模:模是定义在环上的代数结构,包含一个环 R(+,\cdot) 和加法Abel群 (M,+) ,并定义了R与M间元素的二元运算。环上的左R-模包含一个Abel群 (M,+) ,以及一个二元运算 R \times M \to M 称为标量乘法或数乘,对 \forall r_{1}, r_{2} \in R, \forall m_{1},m_{2} \in M 满足

环乘分配律:r_{1}(m_{1}+m_{2})=r_{1}m_{1}+r_{1}m_{2} ;

环加分配律:(r_{1}+r_{2})m_{1}=r_{1}m_{1}+r_{2}m_{2} ;

环乘结合律:(r_{1}r_{2})m_{1}=r_{1}(r_{2}m_{1}) ;

环上幺元性质:1_{R}m=m 

类似地可以定义环上的右R-模M。

子模:设M为左R-模,如有子集 M^{'} \subset M 满足加法封闭性即 M^{'} 是加法Abel群M的子群,标量乘法封闭性,即 (\forall r \in R, \forall m \in M^{'}) \Rightarrow rm \in M^{'} ,则称 M^{'} 是M的子模。

商模:设N为M的子模,商模是在加法商群 M/N 上定义的左R-模,元素为 x+N, x \in M ,定义纯量乘法满足 r(x+N)=rx+N ,则商映射 M \to M/N 是模同态,M/N 是M对N的商模。

环上的模概念是对向量空间概念的推广,这里不再要求标量位于域中,转而标量可以位于任意环中。因此模同向量空间一样是加法Abel群,定义了环元素和模元素之间的乘积,并且这个乘积是符合结合律和分配律的。当R是一个域时,左R-模M就称为域R上的向量空间,模同态就称为线性变换。模非常密切的关联于群的表示论,它还是交换代数和同调代数的中心概念,并广泛的用于代数几何和代数拓扑中

(23)模同态:A,B为两个左R-模,映射 \varphi: A \to B 满足加法群的同态 \forall x,y \in A, \varphi(x+y)=\varphi(x)+\varphi(y) ,保持标量乘法 \forall r \in R, x \in A, \varphi(rx)=r \varphi(x) ,则 \varphi 称为模同态

(24)上积:设X是一个拓扑空间,R是含幺交换环,X的带R系数的p维奇异上链群为 S^{p}(X;R)=Hom(S_{p}(X),R) , T: \Delta_{p+q} \to X 是由标准单形 \Delta_{p+q}=[e_{0},...,e_{p},e_{p+1}...,e_{p+q}] 确定的p+q维奇异单形,l(e_{0},...,e_{p}): \Delta_{p} \to \Delta_{p+q} 和 l(e_{p},...,e_{p+q}): \Delta_{q} \to \Delta_{p+q} 是 \Delta_{p+q} 上的两个线性单形。定义上链间的一个二元运算 \cup :S^{p}(X;R) \times S^{q}(X;R) \to S^{p+q}(X;R) ,对两个上链 x^{p} \in S^{p}(X;R), \, y^{q} \in S^{q}(X;R) ,运算的结果为p+q维上链 x^{p} \cup y^{q} \in S^{p+q}(X;R) ,取值为

 \left \langle x^{p} \cup y^{q},T \right \rangle=\left \langle x^{p}, T \circ l(e_{0},...,e_{p}) \right \rangle \cdot \left \langle y^{q},T \circ l(e_{p},...,e_{p+q}) \right \rangle

对任意的p+q维下链 z_{p+q}=\sum n_{i}T_{i} \in S_{p+q}(X) ,x^{p} \cup y^{q} 的取值为

\left \langle x^{p} \cup y^{q},z_{p+q} \right \rangle=\sum n_{i} \left \langle x^{p} \cup y^{q},T_{i} \right \rangle =\sum n_{i} \left [ \left \langle x^{p}, T \circ l(e_{0},...,e_{p}) \right \rangle \cdot \left \langle y^{q},T \circ l(e_{p},...,e_{p+q}) \right \rangle \right ] 

其中映射 T \circ l(e_{0},...,e_{p}) 恰好是T在 \Delta_{p+q} 的"p维前面" \Delta_{p} 上的限制,它是X的一个p维奇异单形,T \circ l(e_{p},...,e_{p+q}) 恰好是T在 \Delta_{p+q} 的"q维后面" \Delta_{q} 上的限制,它是X的一个q维奇异单形,右式中的乘法是环R中的乘法。把p+q维上链 x^{p} \cup y^{q} 称为上链 x^{p} 和 y^{q} 的上积,上积的取值是环R中的取值的乘法结果。

上积是上链群 S^{\ast}(X;R)=\bigoplus_{p \in Z}S^{p}(X;R)  (即各维上链群的外直和)中的一种乘法,它把一个p维上链与一个q维上链变成一个p+q维上链,对0维上链 e^{0} \in S^{0}(X;R) ,它在任意0维奇异单形 z_{0} 上的取值为环中的乘法幺元1,即 \left \langle e^{0},z_{0} \right \rangle=1 。因此 S^{\ast}(X;R) 关于上链的外直和加法与上积构成有幺元的环,称为上链环

(25)上同调环的上积:上链的上积 \cup :S^{p}(X;R) \times S^{q}(X;R) \to S^{p+q}(X;R) 诱导上同调类的上积运算 \cup :H^{p}(X;R) \times H^{q}(X;R) \to H^{p+q}(X;R) ,运算结果为 [x^{p}] \cup [y^{q}]=[x^{p} \cup y^{q}] ,它是双线性的而且是结合的,0维上链 e^{0} \in S^{0}(X;R) 的上同调类 [e^{0}] 是幺元。这样上同调群的外直和 H^{\ast}(X;R)=\bigoplus_{p \in Z}H^{p}(X;R) 关于上同调类的外直和加法与上积构成含幺元的环,称为上同调环,它满足反交换律,即 [x^{p}] \cup [y^{q}]=(-1)^{pq}[y^{q}] \cup [x^{p}] 。

例子:

De Rham上同调环:在微分流形M上,微分形式的上积就是它的外积运算 dx \wedge dy ,它诱导De Rham上同调类的上积运算 \wedge:H_{DR}^{p}(M) \times H_{DR}^{q}(M) \to H_{DR}^{p+q}(M) ,对任意 [\xi] \in H_{DR}^{p}(M), [\eta] \in H_{DR}^{q}(M) ,运算结果为 [\xi] \wedge [\eta]=[\xi \wedge \eta] ,它是双线性的,并且满足分配律。这样De Rham上同调群的外直和 H_{DR}^{\ast}(X)=\bigoplus_{p \geq 0}H_{DR}^{p}(X) 关于上同调类的加法和上积构成含幺元的环,称为De Rham上同调环,它满足反交换律,即 [\xi] \wedge [\eta]=(-1)^{pq}[\eta] \wedge [\xi] 

(26)诱导环同态:如果 h: X \to Y 是拓扑空间的连续映射,那么它诱导上链环的环同态 h^{\sharp}: S^{\ast}(Y;R) \to S^{\ast}(X;R) ,也诱导上同调环的环同态 h^{\ast}: H^{\ast}(Y;R) \to H^{\ast}(X;R) 

(27)相对上积:设 (X, A) 为空间偶,上同调类的上积可以自然地推广为相对上积运算 \cup :H^{p}(X,A;R) \times H^{q}(X,A;R) \to H^{p+q}(X,A;R) ,上边缘公式、双线性性、结合性、反交换性都成立;

更一般的相对上积:是双线性映射 H^{p}(X,A;R) \times H^{q}(X,B;R) \to H^{p+q}(X, A \cup B;R) ,当 \left \{ A,B \right \} 是一个切除对时,它有定义

 

主要定理:

(1)对偶同态的性质:

如果f是一个同构,那么对偶同态 \widetilde{f} 也是一个同构;

如果f是零同态,那么 \widetilde{f} 也是零同态;

如果f是满同态,那么 \widetilde{f} 也是满同态,也即如果序列 B \overset{f}{\rightarrow} C \to 0 是正合的,则对偶序列 0 \to Hom(C,G) \overset{\widetilde{f}}{\rightarrow} Hom(B,G) 也是正合的

(2)Hom函子的性质:

Hom\left ( \bigoplus_{i \in J}A_{i},G \right ) \cong \prod_{i \in J} Hom(A_{i},G) ;

 

Hom\left (A, \bigoplus_{i \in J}G_{i} \right ) \cong \prod_{i \in J} Hom(A, G_{i}) ;

Hom(Z,G) \cong G ,如果 f: Z \to Z 是乘以m的乘法,那么 \widetilde{f}: Hom(Z,G) \to Hom(Z,G) 也是;

Hom(Z/m,G) \cong ker(G \overset{m}{\rightarrow} G)  ,其中同态 G \overset{m}{\rightarrow} G 表示对元素进行m次的运算;

若T是G的挠子群,则 Hom(G,Z) \cong Hom(G/T,Z) 

(3)存在一下正合序列 0 \to Z/d \to Z/n \overset{m}{\rightarrow} Z/n \to Z/d \to 0 ,其中 d=gcd(m,n) 

(4)正合序列的Hom函子化:如果序列 A \overset{f}{\rightarrow} B \overset{g}{\rightarrow} C \to 0 是正合的,那么对偶序列 0 \to Hom(C,G) \overset{\widetilde{g}}{\rightarrow} Hom(B,G) \overset{\widetilde{f}}{\rightarrow} Hom(A,G) 也是正合的,如果f是单射并且第一个序列分裂,那么对偶同态 \widetilde{f} 是满射并且第二个序列分裂。由此可知协变 Hom(A, -) 函子是左正合的,反变 Hom(-, A) 函子是右正合的;

更一般的结论:如果序列 0 \to A \to B \to C \to 0 是正合的,并且G是可除的Abel群,那么对偶序列 0 \to Hom(C,G) \to Hom(B,G) \to Hom(A,G) \to 0 也是正合的。

(5)上链的性质:

 \left \langle \delta_{p}S^{p}, S_{p+1} \right \rangle=\left \langle S^{p},\partial_{p+1}S_{p+1} \right \rangle ,对单纯上链则为 \left \langle \delta_{p}C^{p}, C_{p+1} \right \rangle=\left \langle C^{p},\partial_{p+1}C_{p+1} \right \rangle

对于 c_{1},c_{2} \in S^{p}(X), z \in S_{p}(X) ,有 c_{1}+c_{2} \in S^{p}(X), \, \left \langle c_{1}+c_{2},z \right \rangle=\left \langle c_{1},z \right \rangle + \left \langle c_{2},z \right \rangle  ;

所有p维定向单形构成的族 \left \{ \sigma_{i} \right \}_{i \in J} 是p维链群 C_{p}(K) 的标准基,设 C_{i} 表示由 \sigma_{i} 生成的 C_{p}(K) 的无限循环子群,那么 C_{p}(K)=\bigoplus_{i \in J}C_{i} ,C^{p}(K;G)=Hom\left ( \bigoplus_{i \in J}C_{i},G \right ) \cong \prod_{i \in J} Hom(C_{i}, G) ,即各个基元的上链子群的直积,对奇异上链群该结论也成立

(6)零维上同调群的计算:若K是一个复形,那么 H^{0}(K;G) 等于所有符合以下条件的0维上链 c^{0} 构成的群:对任意属于 \left | K \right | 的同一个分支的两个0维下链v, w(即两个单点),都有 \left \langle c^{0},v \right \rangle=\left \langle c^{0},w \right \rangle 。零维约化上同调群则满足 H^{0}(K;G) \cong \widetilde{H}^{0}(K;G) \oplus G 。特别地,若 \left | K \right | 是连通的,那么 \widetilde{H}^{0}(K;G)=0 , H^{0}(K) \cong Z ,并且它是由在K的每个顶点上取值为1的上链生成的;

对一般地上链复形(例如奇异上链复形 \mathcal{C}(X)=\left \{ S^{p}(\mathcal{C};G), \delta_{p} \right \} ),同样有 H^{0}(\mathcal{C};G) \cong \widetilde{H}^{0}(\mathcal{C};G) \oplus G ;

设 \left \{ X_{\alpha} \right \}_{\alpha \in J} 是X的全体道路连通分支,那么 H^{0}(X;G) \cong \prod_{\alpha \in J}G ,即一系列G的直积。特别地,当X是道路连通的时,H^{0}(X;G) \cong G 

 

(7)上同调的Eilenberg-Steenrod公理:是拓扑空间的上同调论的共有性质。设G是一个Abel群,带G系数的上同调论可以定义为从拓扑空间偶范畴 \mathcal{A} 到Abel群范畴AbGrp的一族反变函子 H^{n} ,对每个整数 n 它把空间偶 (X, A) 映为Abel群 H^{n}(X,A;G) (称为上同调群),把每个连续映射 h: (X, A) \to (Y, B) 映为上同调群的同态 h^{\ast}: H^{n}(Y,B;G) \to H^{n}(X,A;G) (称为诱导同态),还要定义一个自然变换 \delta^{\ast}: H^{n}(A;G) \to H^{n+1}(X,A;G) 称为联系同态(也称为边界映射),它们满足以下公理:

1)公理1(单位公理):如果 i: (X,A) \to (X,A) 是恒等映射,那么诱导同态 i^{\ast}: H^{n}(X,A;G) \to H^{n}(X,A;G) 是恒等同态;

2)公理2(复合公理):(k \circ h)^{\ast}= h^{\ast} \circ k^{\ast} ;

3)公理3(自然变换公理):联系同态 \delta^{\ast}: H^{n}(A;G) \to H^{n+1}(X,A;G) 是反变函子 H^{n} 的自然变换。也就是空间偶映射 f: (X,A) \to (Y,B) 满足 \tilde{f}^{\ast} \circ \delta^{\ast}=\delta^{\ast} \circ (f|_{B})^{\ast} ,即下列图表交换

4)同伦公理:如果两个映射 h,k: (X,A) \to (Y,B) 是同伦的,即存在一个映射 F:(X \times I, A \times I)\to (Y,B) 使得 F(x, 0)=h(x), \, F(x,1)=k(x) 对所有 x \in X 成立,那么 h^{\ast}=k^{\ast} ;

5)切除公理:对任意空间偶 (X, A) 和X的开子集U,如果U的闭包包含在A内部中即 \overline{U} \subset Int\,A ,那么空间偶的包含映射 i: (X-U,A-U) \to (X,A) 诱导的同态 i^{\ast}: H^{n}(X,A;G) \to H^{n}(X-U,A-U;G) 是同构;

6)维数公理:如果P是单点空间,那么 H^{n}(P;G)=0 \, (n\neq 0) ,H^{0}(P;G) \cong G ,H^{0}(P;G) 称为系数群;

7)正合公理:对任意空间偶 (X, A) ,上同调群序列 0 \to ... \to H^{p}(X;G) \overset{i^{\ast}}{\rightarrow} H^{p}(A;G) \overset{\delta^{\ast}}{\rightarrow} H^{p+1}(X,A;G) \overset{j^{\ast}}{\rightarrow} H^{p+1}(X;G) \to ... 是长正合序列,其中 i^{\ast}, \, j^{\ast} 分别是由包含映射 i: A \to X 和 j: X \to (X, A) 诱导的同态,而 \delta_{\ast} 是由上边缘算子 \delta_{p}: S^{p}(X,A;G) \to S^{p+1}(X,A;G) 诱导的联系同态;

8)可加性公理:如果 X=\coprod_{\alpha}X_{\alpha} 是拓扑空间族 X_{\alpha} 的非交并,那么 H^{n}(X;G) \cong \prod_{\alpha}H^{n}(X_{\alpha};G) ,即各个分支的上同调群的直积

公理的意义:

可以证明只要符合艾伦伯格-斯廷罗德公理的上同调论都会有共同的结果,例如单纯上同调论、奇异上同调论。

 

(7)如果 i: (X,A) \to (X,A) 是恒等映射,那么 i^{\ast}:H^{p}(X,A) \to H^{p}(X,A) 是恒等同态;如果 f: X \to Y, \, g: Y \to Z 是拓扑空间之间的两个连续映射,那么诱导同态满足 (g \circ f)^{\ast}=f^{\ast} \circ g^{\ast} 。
这说明奇异上同调论满足单位公理、复合公理

(8)上同调群的拓扑不变性:如果 f: X \to Y 是拓扑空间之间的同胚,那么 诱导同态 f^{\ast}:H^{p}(Y;G) \to H^{p}(X;G) 是一个同构

(9)多连通空间的上同调群:设 \left \{ X_{\alpha} \right \}_{\alpha \in J} 是拓扑空间X的全体道路连通分支,那么

H^{p}(X) \cong \prod_{\alpha \in J}H^{p}(X_{\alpha})

这说明奇异上同调论满足可加性公理

(10)正合上同调序列:

复形的正合上同调序列:若 K_{0} 是复形K的一个子复形,那么存在一个长正合上同调序列 0 ... \to H^{p}(K;G) \to H^{p}(K_{0};G) \overset{\delta^{\ast}}{\rightarrow} H^{p+1}(K,K_{0};G) \to H^{p+1}(K;G) \to ... ,如果 K_{0} 非空,那么结论在约化上同调中也成立;拓扑空间的正合上同调序列:对拓扑空间偶(X, A),存在长正合上同调序列 0 \to ... \to H^{p}(X;G) \overset{i^{\ast}}{\rightarrow} H^{p}(A;G) \overset{\delta^{\ast}}{\rightarrow} H^{p+1}(X,A;G) \overset{j^{\ast}}{\rightarrow} H^{p+1}(X;G) \to ... ,如果A非空,那么结论在约化上同调中也成立。

这说明奇异上同调论满足正合公理

(11)如果P是单点空间,那么 H^{p}(P;G)=0 \, (p \neq 0) ,H^{0}(P;G) \cong G 

这说明奇异上同调论满足维数公理

(12)如果两个连续映射 f,g: (X,A) \to (Y,B) 是同伦的,即存在一个映射 F:(X \times I, A \times I)\to (Y,B) 使得 F(x, 0)=f(x), \, F(x,1)=g(x) 对所有 x \in X 成立,那么诱导同态相等 f^{\ast}=g^{\ast}: H^{p}(Y,B;G) \to H^{p}(X,A;G) 。如果 A=B=\varnothing ,那么该结论在约化同调中也成立 

这说明奇异上同调论满足同伦公理

(13)上同调群的同伦不变性:如果拓扑空间偶之间的连续映射 f: (X,A) \to (Y,B) 是一个同伦等价,那么诱导同态 f^{\ast}: H^{p}(Y,B;G) \to H^{p}(X,A;G) 是一个同构。如果 A=B=\varnothing ,那么该结论在约化同调中也成立

(14)切除定理:设A是拓扑空间X的子空间,U是X的子集并且 \overline{U} \subset Int\,A,那么空间偶的包含映射 i: (X-U,A-U) \to (X,A) 诱导的同态 i^{\ast}: H^{n}(X,A;G) \to H^{n}(X-U,A-U;G) 是同构;

这说明奇异上同调论满足切除公理

(15)上同调的Mayer-Vietoris序列:设拓扑空间 X=X_{1} \cup X_{2} ,如果 \left \{ X_{1},X_{2} \right \} 是一个切除对,也即拓扑空间偶的包含映射 i: (X_{1},X_{1} \cap X_{2}) \to (X,X_{2}) 诱导的同态 i^{\ast}: H^{p}(X,X_{2}) \to H^{p}(X_{1},X_{1} \cap X_{2}) 是同构,那么就有一个正合上同调序列

 ... \to H^{p-1}(X_{1} \cap X_{2};G) \to H^{p}(X) \overset{g^{\ast}}{\rightarrow} H^{p}(X_{1};G) \oplus H^{p}(X_{2};G) \overset{f^{\ast}}{\rightarrow} H^{p}(X_{1} \cap X_{2};G) \to ... 

称为 \left \{ X_{1},X_{2} \right \} 的上同调梅耶-菲托里斯序列。如果 X_{1} \cap X_{2} 是非空的,那么在约化上同调中也存在类似的正合序列

(16)单纯上同调与奇异上同调的同构:设 K_{0} 是复形K的子复形,它们的定向单形到剖分空间的奇异单形的链映射为 \eta: C_{p}(K,K_{0}) \to S_{p}(\left | K \right |,\left | K_{0} \right |) ,它的对偶为上链映射为 \eta:S^{p}(\left | K \right |,\left | K_{0} \right |;G) \to C^{p}(K,K_{0};G) ,其诱导同态 \eta^{\ast}: H^{p}(\left | K \right |,\left | K_{0} \right |;G) \to H^{p}(K,K_{0};G) 是单纯上同调与奇异上同调之间的一个同构,并且 \eta^{\ast} 不依赖于K的顶点的偏序选取

(17)同构 \eta_{\ast} 的可交换性质:单纯上同调与奇异上同调之间的同构 \eta^{\ast}: H^{p}(\left | K \right |,\left | K_{0} \right |;G) \to H^{p}(K,K_{0};G) ,与上边缘算子 \delta_{p}: C^{p}(K,K_{0};G) \to C^{p+1}(K,K_{0};G) , \delta_{p}^{'}: S^{p}(\left | K \right |,\left | K_{0} \right |) \to S^{p+1}(\left | K \right |,\left | K_{0} \right |) 诱导的同态 \delta^{\ast}: H^{p}(K,K_{0};G) \to H^{p+1}(K,K_{0};G) ,(\delta^{\ast})^{'}: H^{p}(\left | K \right |,\left | K_{0} \right |;G) \to H^{p+1}(\left | K \right |,\left | K_{0} \right |;G) 可交换 ;与单纯映射 f: (K,K_{0}) \to (L,L_{0}) 和连续映射 h: (\left | K \right |,\left | K_{0} \right |) \to (\left | L \right |,\left | L_{0} \right |) 分别诱导的同态 f^{\ast}: H^{p}(K,K_{0}) \to H^{p}(L,L_{0}) ,h^{\ast}: H^{p}(\left | K \right |,\left | K_{0} \right |) \to H^{p}(\left | L \right |,\left | L_{0} \right |) 可交换

(18)自由分解的性质:如果两个Abel群的自由分解如下图表

其中水平序列是正合的,A和B是自由的,那么存在使这个图表交换的同态 \alpha: A \to A^{'} 和 \beta: B \to B^{'}

(18)设 \mathcal{C}, \mathcal{D} 是两个自由链复形,如果对所有的p都有一个同调群的同态 f:H_{p}(\mathcal{C}) \to H_{p}(\mathcal{D}) ,那么存在一个诱导该同态的链映射 \phi: \mathcal{C} \to \mathcal{D} ,这个链映射是通过闭链群映射 \beta: Z_{\mathcal{C}, p} \to Z_{\mathcal{D},p} 扩张得到的。如果 \mathcal{C}, \mathcal{D} 是保持增广的,那么链映射 \phi: \mathcal{C} \to \mathcal{D}  也是保持增广的;

设 0 \to \mathcal{C} \overset{\phi}{\rightarrow} \mathcal{D} \to \mathcal{E} \to 0 是自由链复形的正合序列,如果 \phi 在所有维下都诱导同调的同构,那么它也诱导上同调的同构;

(19)映射柱定理:设 h: X \to Y 是拓扑空间的连续映射,那么存在一个空间 Y^{'} 和两个嵌入映射 i: X \to Y^{'}, ,\, j: Y \to Y^{'} ,使得 j 是一个同伦等价,并且图表

直至同伦是交换的。Y^{'} 称为映射h的映射柱。由此可知,h是一个同伦等价当且仅当i是一个同伦等价。

映射柱的构造方法:对 X \times I 和Y的不交并 X \times I \cup Y ,通过把 X \times 0 的每一点 (x, 0) 与Y的点 h(x) 等同起来,而得到的粘着空间就是空间 Y^{'} ,这也是称它为映射柱的原因。商映射记作 \pi: (X \times I) \cup Y \to Y^{'} ,它在Y上的限制是一个从Y到 Y^{'} 的嵌入 j: Y \to Y^{'} ,而 i(x)=\pi(x,1) 是X到 Y^{'} 的嵌入。

类似地有自由链映射的映射柱:

设 \mathcal{C}, \mathcal{D} 是两个自由链复形, \phi: \mathcal{C} \to \mathcal{D} 是一个链映射,那么存在一个自由链复形 \mathcal{D}^{'} 和两个单链映射 i: \mathcal{C} \to \mathcal{D}^{'}, \, j: \mathcal{D} \to \mathcal{D}^{'} ,使得 j 在所有维数下都诱导同调的同构,并且图表

直至链同伦是交换的,商 \mathcal{D}^{'}/im \, i 和 \mathcal{D}^{'}/im \, j 也是自由Abel群。自由链复形 \mathcal{D}^{'} 称为链映射 \phi: \mathcal{C} \to \mathcal{D} 的映射柱。

定理的意义:

同伦论中往往需要在拓扑空间上定义满足某种条件的连续映射,这对非常一般的拓扑空间来说很难着手。利用映射柱的构造法,可以把映射 h: X \to Y 的问题转化为关于嵌入 i: X \to Y^{'} 的问题。同伦论中的道路提升引理就是这方面的应用

(20)同调同构与上同调同构关系:设 \mathcal{C}, \mathcal{D} 是两个自由链复形,\phi: \mathcal{C} \to \mathcal{D} 是链映射,如果 \phi 在所有维数下诱导的同调群同态 \phi_{\ast}: H_{p}(\mathcal{C}) \to H_{p}(\mathcal{D}) 是一个同构,那么 \phi 在所有维数下诱导的上同调群同态 \phi^{\ast}: H^{p}(\mathcal{D};G) \to H^{p}(\mathcal{C};G) 也是一个同构。也就是说,(\forall p)(H_{p}(\mathcal{C}) \cong H_{p}(\mathcal{D})) \Rightarrow (\forall p)(\forall G)(H^{p}(\mathcal{C};G) \cong H^{p}(\mathcal{D};G)) ;

更一般的形式:设 \mathcal{C}, \mathcal{D} 是两个在低于某个维数为零调的自由链复形,\phi: \mathcal{C} \to \mathcal{D} 是链映射,如果 \phi 在所有维数下诱导同调群的同构,那么 \phi 是一个链同伦等价

证明思路:利用链映射的映射柱定理

(21)Kronecker映射的正合序列:如果 \mathcal{C} 是自由链复形, k: H^{p}(\mathcal{C};G) \to Hom(H_{p}(\mathcal{C}),G) 是Kronecker映射,那么就有一个自然的正合序列 0 \to ker \, k \to H^{p}(\mathcal{C};G) \overset{k}{\rightarrow} Hom(H_{p}(\mathcal{C}),G) \to 0  ,它是分裂的,但不是自然分裂

(22)Kronecker指标和Kronecker映射的自然性:如果 \phi: \mathcal{C} \to \mathcal{D} 是一个链映射,Kronecker指标 H^{p}(\mathcal{C};G) \times H_{p}(\mathcal{C}) \to G 对一个变量是共变的,对另一个变量是反变的,因此有 \left \langle \phi^{\ast}(x^{p}),y_{p} \right \rangle=\left \langle x^{p}, \phi_{\ast}(y_{p}) \right \rangle 。而对Kronecker映射 k: H^{p}(\mathcal{C};G) \to Hom(H_{p}(\mathcal{C}),G) ,下面图表是交换的

(22)同调与上同调的关系:如果 \mathcal{C} 是自由链复形,所有的p维下同调群 H_{p}(\mathcal{C}) 也都是自由的,那么Kronecker映射 k: H^{p}(\mathcal{C};G) \to Hom(H_{p}(\mathcal{C}),G) 对所有的p的均为同构。即上同调群 H^{p}(\mathcal{C};G) 能以自然的方式看作是下同调群 H_{p}(\mathcal{C}) 的对偶群 Hom(H_{p}(\mathcal{C}),G) 

(23)CW复形的上同调群:如果X是一个CW复形,\mathcal{D}(X)=\left \{ H_{p}(X^{p},X^{p-1}), \partial_{p} \right \} 是它的胞腔链复形,那么对所有的p和G,都有同构 H^{p}(X;G) \cong H^{p}(\mathcal{D}(X);G) 。如果X是可三角剖分的并且 h: \left | K \right | \to X 是它的的三角剖分,其中K是一个复形,那么这个同构是由包含映射 i: \mathcal{D}(X) \to \mathcal{C}(K) 诱导的

(10)曲面和空间的上同调群:

Mobuis带M及其边缘E:H^{1}(M,E)=0, H^{2}(M,E) \cong Z/2, \, H^{1}(M) \cong Z, H^{2}(M)=0 ;

球面 S^{n}(n>0) :当 i=0 或 i=n时 H^{i}(S^{n};G) \cong G ,当 i=n 时 H^{i}(B^{n},S^{n-1};G) \cong G ,对于 i 的其他值,这些上同调群均为零;

环面 T^{2}=S^{1} \times S^{1} :H^{0}(T^{2};G) \cong H^{2}(T^{2};G) \cong G, \, H^{1}(T^{2};G) \cong G \oplus G ;

Klein瓶:H^{0}(X;G) \cong G, \, H^{1}(X;G) \cong G \oplus ker(G \overset{2}{\rightarrow} G), \, H^{2}(X;G)=G/2G 。特别地,H^{0}(X) \cong Z, \, H^{1}(X) \cong Z, \, H^{2}(X)=Z/2 

(11)外微分算子的性质:

线性:外微分算子是线性算子;

微分形式的外积运算:满足分配律,结合律,和反交换律,即对p阶微分形式和q阶微分形式有 \lambda \wedge \mu =(-1)^{pq} \mu \wedge \lambda ;

外积法则(上边缘公式):设 \omega, \eta 分别是 deg \omega, deg \eta 阶微分形式,则有 d(\omega \wedge \eta)=d\omega \wedge \eta+(-1)^{deg\,\omega}(\omega \wedge d\eta) ,这就是微分形式的上边缘公式;

Poincare引理:对任何k阶微分形式 \omega ,若其系数具有二阶连续偏微商,则有 d^{2}\omega=0 。逆定理也成立,即若 \omega 是一个p阶外微分式且 d\omega=0,则存在一个p-1阶外微分形式a,使得 \omega=da 

(12)Stokes公式:设D是R^{n}中的单连通区域,\partial D表示D的边界,\omega是n-1阶微分形式,则有

\int_{D}d\omega=\int_{\partial D}\omega

它说明高阶微分形式d\omega 在区域上的积分,等于低一阶微分形式 \omega 在该区域低一维的边界上的积分。外微分运算和积分是相互抵消的。这个公式可推广到更一般的流形上

(13)零维De Rham上同调群的计算:若光滑流形M有n个连通分支,则 H_{DR}^{0}(M) \cong R^{n} 。这是因为M上导数为零的 C^{\infty} 函数在每个连通分量上为常数

(14)一些微分流形的De Rham上同调群:

Mobuis带M:H_{DR}^{k}(M) \cong H_{DR}^{k}(S^{1}) ,因为Mobuis带可收缩为圆周 S^{1} ;

球面 S^{n}(n>0) :或者球面和一个开区间的乘积 S^{n} \times I^{m} \,\, (n>0, m \geq 0) ,当 i=0 或 i=n时 H_{DR}^{i}(S^{n} \times I^{m}) \cong R ,其他情况下为零群;

n-重环面 nT^{2} (n>0) H_{DR}^{k}(nT^{2}) \cong R^{\binom{n}{k}} 

(15)De Rham定理:若M是紧致光滑流形,则M的De Rham上同调群同构于实系数的奇异上同调群,即 H_{DR}^{k}(M) \cong H^{k}(M;R) 。

进一步的结果:对这些群中的上同调类定义外积运算(楔积),则赋予了环的结构,那么这两个上同调环即De Rham上同调环和实系数的奇异上同调环也是同构的。

由此可见,De Rham上同调群也是同伦不变量。德拉姆定理是代数拓扑与微分几何的主要桥梁

(16)上链环:上链群的外直和 S^{\ast}(X;R)=\bigoplus_{p \in Z}S^{p}(X;R) 中的上积运算 \cup :S^{p}(X;R) \times S^{q}(X;R) \to S^{p+q}(X;R) 是双线性的,满足结合律,并且以0维上链 e^{0} \in S^{0}(X;R) 为幺元(单位元),也即设 x^{p}=\sum n_{i}T_{i}^{\ast} \in S^{p}(X;R), \, y^{q}=\sum n_{j}T_{j}^{\ast} \in S^{q}(X;R) ,z_{p+q}=\sum n_{k}T_{k} \in S_{p+q}(X) ,则有

双线性:\left \langle x^{p} \cup y^{q},z_{p+q} \right \rangle=\left \langle \sum_{i,j}n_{i}n_{j}(T_{i}^{\ast} \cup T_{j}^{\ast}), \sum n_{k}T_{k} \right \rangle=\sum_{i,j,k} \left \langle T_{i}^{\ast} \cup T_{j}^{\ast}, T_{k} \right \rangle ;

结合律:(x^{p} \cup y^{q}) \cup z^{r}=x^{p} \cup (y^{q} \cup z^{r}) 。

因此 S^{\ast}(X;R) 关于上链的外直和加法与上积构成有幺元的环,称为上链环。上链环的上积一般不满足反交换性

(17)上积的上边缘公式:\delta(x^{p} \cup y^{q})=(\delta x^{p}) \cup y^{q}+(-1)^{p}x^{p} \cup (\delta y^{q}) ;

微分形式外积的上边缘公式:d(\omega \wedge \eta)=d\omega \wedge \eta+(-1)^{deg\,\omega}(\omega \wedge d\eta) 

(18)上同调环:上链的上积 \cup :S^{p}(X;R) \times S^{q}(X;R) \to S^{p+q}(X;R) 诱导上同调类的上积运算 \cup :H^{p}(X;R) \times H^{q}(X;R) \to H^{p+q}(X;R) ,运算结果为 [x^{p}] \cup [y^{q}]=[x^{p} \cup y^{q}] ,它是双线性的而且是结合的,0维上链 e^{0} \in S^{0}(X;R) 的上同调类 [e^{0}] 是幺元。这样上同调群的外直和 H^{\ast}(X;R)=\bigoplus_{p \in Z}H^{p}(X;R) 关于上同调类的外直和加法与上积构成含幺元的环,称为上同调环,并且上积一般不满足交换律,但一定满足反交换律(反对称性),即 [x^{p}] \cup [y^{q}]=(-1)^{pq}[y^{q}] \cup [x^{p}] 

(19)De Rham上同调环:在微分流形M上,微分形式的上积就是它的外积运算 dx \wedge dy ,它诱导De Rham上同调类的上积运算 \wedge:H_{DR}^{p}(M) \times H_{DR}^{q}(M) \to H_{DR}^{p+q}(M) ,对任意 [\xi] \in H_{DR}^{p}(M), [\eta] \in H_{DR}^{q}(M) ,运算结果为 [\xi] \wedge [\eta]=[\xi \wedge \eta] ,它是双线性的,并且满足分配律。这样De Rham上同调群的外直和 H_{DR}^{\ast}(X)=\bigoplus_{p \geq 0}H_{DR}^{p}(X) 关于上同调类的外直和加法和上积构成含幺元的环,称为De Rham上同调环,它满足反交换律,即 [\xi] \wedge [\eta]=(-1)^{pq}[\eta] \wedge [\xi] 。

此外,紧致光滑流形的De Rham上同调环同构于实系数的奇异上同调环,即 H_{DR}^{\ast}(X) \cong H^{\ast}(X;R) 

(20)上同调环的同伦不变性:如果 h: X \to Y 是拓扑空间的连续映射,那么它诱导上同调环的环同态 h^{\ast}: H^{\ast}(Y;R) \to H^{\ast}(X;R) ,进一步如果 h: X \to Y 是拓扑空间之间的同伦等价,那么诱导环同态 h^{\ast}: H^{\ast}(Y;R) \to H^{\ast}(X;R) 是一个同构。

注意,当两个拓扑空间的上同调群同构时,它们的上同调环不一定同构,因为正维数上同调类的每个上积可能退化为零,这样的上同调环称为平凡环。因此,利用上同调环判定两个拓扑空间是否同胚会比上同调群更为有效,但是上同调环比上同调群更难计算。

 

带任意系数的同调


(1)Abel群的张量积:设A, B是Abel群,F(A, B) 是由集合 A \times B 生成的自由Abel群,R(A, B) 是形如 (a+a^{'},b)-(a,b)-(a^{'},b) ,(a,b+b^{'})-(a,b)-(a,b^{'}) 的所有元素生成的子群,其中 a,a^{'} \in A, b,b^{'} \in B ,那么商群 A \otimes B=F(A,B)/R(A,B) 也是Abel群,称为A和B的张量积。把元素对 (a, b) 的陪集记为 a \otimes b ,因为 F(A, B) 的任何元素都是元素对 (a,b) 的有限线性组合,因而 A \otimes B 的任何元素都是形如 a \otimes b 的元素的有限线性组合

性质:任何函数 f: A \times B \to C 决定唯一一个Abel群同态 g: F(A,B) \to C ,f 是双线性的当且仅当它们把子群 R(A,B) 映为零。因此每一个双线性函数 f: A \times B \to C 恰好生产唯一的一个同态 g: A \otimes B \to C ,双线性函数的研究转化为同态的研究

(2)Abel群同态的张量积:设 f: A \to A^{'}, g: B \to B^{'} 都是Abel群同态,则有唯一的一个同态 f \otimes g: A \otimes B \to A^{'} \otimes B^{'} ,使得对所有的 a,b 都有 (f \otimes g)(a \otimes b)=f(a) \otimes g(b) ,把这个同态称为 f 和 g 的张量积

(3)张量积函子:张量积是Abel群偶范畴到Abel群范畴的一个共变函子,它把Abel群偶 (A, B) 映射到 A \otimes B ,把 (f, g) 映射到 f \otimes g 。它对两个群变量都是共变的

(4)同态模:设R是含幺交换环,A和B是左R-模,从A到B的所有模同态构成的群 Hom_{R}(A,B) 是一个左R-模

(5)模的张量积:设A, B是含幺交换环R上的左模,F(A, B) 是由集合 A \times B 生成的自由Abel群,R(A, B) 是形如 (a+a^{'},b)-(a,b)-(a^{'},b) ,(a,b+b^{'})-(a,b)-(a,b^{'}) ,(ma,b)-(a,mb) 的所有元素生成的子群,其中 a,a^{'} \in A, b,b^{'} \in B, m \in R ,那么商群 A \otimes_{R} B=F(A,B)/R(A,B) 是一个左R-模,称为模A和B在环R上的张量积。把元素对 (a, b) 的陪集记为 a \otimes b 。

类似地,设 f: A \to A^{'}, g: B \to B^{'} 都是模同态,则有唯一的一个模同态 f \otimes g: A \otimes_{R} B \to A^{'} \otimes_{R} B^{'} ,使得对所有的 a,b 都有 (f \otimes g)(a \otimes b)=f(a) \otimes g(b) ,把这个同态称为 f 和 g 的张量积。从而模的张量积是一个函子。

模的张量积与Abel群的张量积有类似的性质和定理,除 A \otimes B 的通常关系外,在 A \otimes_{R} B 上还有关系 m(a \otimes b)=(ma) \otimes b = a \otimes (mb) 。注意 A \otimes_{R} B 是 A \otimes B 的子群,它同构于 A \otimes B 模掉由形如 (ma) \otimes b - a \otimes (mb) 的所有项生成的子群所得的商群

(6)带任意系数的同调群(张量积形式):

链复形:G是一个Abel群,\mathcal{C}=\left \{ S_{p}, \partial_{p} \right \} 是链复形;

带G中系数的同调群:链复形 \mathcal{C} \otimes G=\left \{ S_{p} \otimes G, \partial_{p} \otimes i_{G} \right \} ,p维同调群为 H_{p}(\mathcal{C};G)=ker( \partial_{p} \otimes i_{G}) / im(\partial_{p+1} \otimes i_{G}) 。注意如果G是整数群,那么 \mathcal{C} \otimes G 自然与 \mathcal{C} 同构;

带G中系数的约化同调群:在链复形 \mathcal{C} \otimes G 的 -1维添加群 Z \otimes G \cong G ,并用 \varepsilon \otimes i_{G} 作为边缘算子,即 S_{0} \otimes G \to Z \otimes G \to 0 ,p维约化同调群为 \widetilde{H}_{p}(\mathcal{C};G) ,有 \widetilde{H}_{0}(\mathcal{C};G) \cong H_{0}(\mathcal{C};G) \oplus G ,\widetilde{H}_{p}(\mathcal{C};G) = H_{p}(\mathcal{C};G) , p>0 ;

链映射:如果 f: \mathcal{C} \to \mathcal{D} 是链映射,那么 f \otimes i_{G}: \mathcal{C} \otimes G \to \mathcal{D} \otimes G 也是链映射,它诱导的同态记作 f_{\ast}: H_{p}(\mathcal{C};G) \to H_{p}(\mathcal{D};G) 。如果 \mathcal{C}, \mathcal{D} 保持增广的,那么 f \otimes i_{G} 也诱导约化同调群的同态;

链同伦:如果 f,g: \mathcal{C} \to \mathcal{D} 都是链映射,D是它们之间的链同伦,那么 D \otimes i_{G} 是 f \otimes i_{G}, g \otimes i_{G} 之间的链同伦。如果 f 是链同伦等价,那么 f \otimes i_{G} 也是链同伦等价。如果 f, g 是链同伦的,那么诱导的带任意系数的同态 f_{\ast},g_{\ast}: H_{p}(\mathcal{C};G) \to H_{p}(\mathcal{D};G) 是相等的;

正合同调序列:如果链复形的短正合序列 0 \to \mathcal{C} \to \mathcal{D} \to \mathcal{E} \to 0 在每一维数下都是分裂的,那么张量序列 0 \to C_{p} \otimes G \to D_{p} \otimes G\to E_{p} \otimes G \to 0 是正合的,这样就得到一个正合同调序列

... \to H_{p}(\mathcal{C};G) \to H_{p}(\mathcal{D};G) \to H_{p}(\mathcal{E};G) \overset{\partial_{\ast}}{\rightarrow} H_{p-1}(\mathcal{C};G) \to ...  ,其中 \partial_{\ast} 是由 \partial \otimes i_{G} 诱导的

 

主要定理:

(1)存在一个同构 Z \otimes G \cong G 将 n \otimes g 映射为 ng ,并且关于G的同态是自然的,即下列图表交换

(2)满态的张量积是一定是满态:如果同态 f: A \to A^{'}, g: B \to B^{'} 都是满的,那么 f \otimes g: A \otimes B \to A^{'} \otimes B^{'} 也是满的,并且 ker(f \otimes g) 是由形如 a \otimes b, \, a \in ker(f), b \in ker(g) 的所有元素生成的子群。注意单态的张量积不一定是单态

(3)正合序列的张量化:如果序列 A \overset{f}{\rightarrow} B \overset{g}{\rightarrow} C \to 0 是正合的,那么序列 A \otimes G \overset{f \otimes i_{G}}{\rightarrow} B \otimes G \overset{g \otimes i_{G}}{\rightarrow} C \otimes G \to 0 也是正合的,如果 f 是单射并且第一个序列是分裂的,那么 f \otimes i_{G} 也是单射并且第二个序列是分裂的。由此可知张量积函子是右正合函子;

更一般地结论:如果序列 0 \to A \to B \to C \to 0 是正合的,并且G是无挠的,那么序列 0 \to A \otimes G \to B \otimes G \to C \otimes G \to 0 也是正合的。

(4)存在一个自然的同构 Z/m \otimes G \cong G/mG ,特别地,当m=1时就是 Z \otimes G \cong G

(5)张量积的性质:

交换律:A \otimes B \cong B \otimes A ;

结合律:A \otimes (B \otimes C) \cong (A \otimes B) \otimes C ;

分配律:(\oplus A_{i}) \otimes B \cong \oplus (A_{i} \otimes B) , A \otimes (\oplus B_{i}) \cong \oplus (A \otimes B_{i})

(6)自由Abel群的张量积是自由Abel群:如果A, B分别是以 \left \{ a_{i} \right \}, \, \left \{ b_{j} \right \} 为基的自由Abel群,那么 A \otimes B 是以 \left \{ a_{i} \otimes b_{j} \right \} 为基的自由Abel群

(7)若A是一个R模,则存在一个R模的同构 R \otimes_{R}A \cong A 。若A和B是都是Z模,那么 A \otimes_{Z}B \cong A \otimes B 

(8)向量空间的张量积性质:如果A,B,C都域F上的向量空间,那么张量积函子 \otimes_{F} 保持向量空间的正合序列,并且每一个这样的序列都是分裂的。如果A和B分别有基 \left \{ a_{i} \right \}, \left \{ b_{j} \right \} ,那么 \left \{ a_{i} \otimes b_{j} \right \} 是向量空间 A \otimes_{F} B 的基

(9)如果A,B是Q上的向量空间,那么 A \otimes_{Q} B = A \otimes B 

(10)设 \mathcal{C}, \mathcal{D} 是自由链复形,如果链映射 f: \mathcal{C} \to \mathcal{D} 在所有维数下都诱导同调的同构,那么链映射 f \otimes i_{G}: \mathcal{C} \otimes G \to \mathcal{D} \otimes G 也是如此

(11)设 \mathcal{C} 是自由链复形,那么就有一个正合序列 0 \to H_{p}(\mathcal{C}) \otimes G \overset{f}{\rightarrow} H_{p}(\mathcal{C} \otimes G) \to cok(f) \to 0 ,并且这个序列是分裂的,其中 f 是由包含映射诱导的,如果对所有的 i 同调群 H_{i}(\mathcal{C}) 是自由的,那么 f 是一个同构

 

同调代数


(1)典范自由分解:把Abel群的短正合序列 0 \to C \to B \to A \to 0 ,其中B, C是自由的,称为Abel群A的一个自由分解。任何Abel群都有自由分解,例如把B取为由A的元素生成的自由Abel群记作F(A) ,C取为自然投影 F(A) \to A 的核记作 R(A)=ker(g) ,得到的短正合序列 0 \to R(A) \overset{f}{\rightarrow} F(A) \overset{g}{\rightarrow} A \to 0 ,就称为A的典范自由分解

(2)Ext函子(扩张函子):设Abel群A的典范自由分解为 0 \to R(A) \overset{f}{\rightarrow} F(A) \overset{g}{\rightarrow} A \to 0 ,由Hom函子导出的对偶序列 0 \to Hom(A,B) \overset{\widetilde{g}}{\rightarrow} Hom(F(A),B) \overset{\widetilde{f}}{\rightarrow} Hom(R(A),B) \overset{h}{\rightarrow} coker(\widetilde{f}) \to 0 也是正合的,其中B为任意一个Abel群, \widetilde{f}, \widetilde{g} 为 f, g 的对偶同态,把商群 coker(\widetilde{f})=Hom(R(A),B) / \widetilde{f}(Hom(F(A),B)) 记作 Ext(A, B) 。对任意两个Abel群同态 \gamma: A \to A^{'}, \, \delta: B^{'} \to B ,同态 \gamma 可以扩张成典范自由分解之间的同态

它与同态 \delta: B^{'} \to B 一起生成由Hom函子导出的正合序列之间的同态,即下列图表交换

并且同态 Ext(\gamma,\delta) 是由 \gamma, \delta 和所涉及的自由分解唯一确定的,它不依赖于 \alpha, \beta 的选取

由此可知,Ext(A, B) 就是一个函子,它是Hom函子的导出函子,对第一个变量是反变的,对第二个变量是共变的。也即 Ext(A, -) 是共变函子,它是左正合函子 Hom(A,-) 的右导出函子,它把Abel群X指派为Abel群 Ext(A, X) ,把Abel群同态 \varphi: X \to Y 指派为群同态 Ext(i_{A}, \varphi): Ext(A,X) \to Ext(A, Y) ;而 Ext(-, B) 是反变函子,它是右正合函子 Hom(-, A) 的左出导函子,它把Abel群X指派为Abel群 Ext(X, B) ,把Abel群同态 \varphi: X \to Y 指派为反向的群同态 Ext(\varphi, i_{B}): Ext(Y,B) \to Ext(X, B)

通常也把 Ext(A, B) 称为B经由A扩张而成的群。

Ext函子的意义:

如果我们用一个群G从左边或右边Hom一个一般的短正合序列,所得到的序列可能不再是正合的,Ext函子某种意义上度量了使正合性失效的扩张程度

(3)Tor函子(挠积函子):设Abel群A的典范自由分解为 0 \to R(A) \overset{f}{\rightarrow} F(A) \overset{g}{\rightarrow} A \to 0 ,由张量积函子导出的序列 \dpi{120} 0 \to R(A) \otimes B \overset{f \otimes i_{B}}{\rightarrow} F(A) \otimes B \overset{g \otimes i_{B}}{\rightarrow} A \otimes G \to 0 也是正合的,其中B为任意一个Abel群,把群 ker(f \otimes i_{B}) 记作 Tor(A,B) 或者 A \ast B 。对任意两个Abel群同态 \gamma: A \to A^{'}, \, \delta: B \to B^{'} ,同态 \gamma 可以扩张成典范自由分解之间的同态

它与同态 \delta: B \to B^{'} 一起生成由张量积函子导出的正合序列之间的同态,即下列图表交换

并且同态 \varepsilon 是由 \gamma, \delta 和所涉及的自由分解唯一确定的,它不依赖于 \alpha, \beta 的选取。\varepsilon 记作 Tor(\gamma,\delta) 或者 \gamma \ast \delta 

由此可知,A \ast B 就是一个函子,称为A和B的挠积,其结果是一个挠群,它是张量积函子 \otimes 的导出函子,对两个变量都是共变的。它把Abel群X指派为Abel群 A \ast X,把Abel群同态 \varphi: X \to Y 指派为群同态 i_{A} \ast \varphi: A \ast X \to A \ast Y 

(4)链复形的张量积:设 \mathcal{C}=\left \{ C_{p}, \partial_{p} \right \}, \mathcal{C}^{'}=\left \{ C_{p}^{'}, \partial_{p}^{'} \right \} 是两个链复形,定义它们的张量积 \mathcal{C} \otimes \mathcal{C}^{'} 是这样一个链复形,它的m维链定义为 (\mathcal{C} \otimes \mathcal{C}^{'})_{m}=\bigoplus_{p+q=m} C_{p} \otimes C_{q}^{'} 。如果链群 C_{p},C_{p}^{'} 都是域F上的向量空间,则也可以定义模的张量积 \mathcal{C} \otimes_{F} \mathcal{C}^{'} ,它的m维链群是 \bigoplus_{p+q=m}(C_{p} \otimes_{F} C_{p}^{'}) ;

边缘算子:定义为 \overline{\partial}(c_{p} \otimes c_{q}^{'})=\partial c_{p} \otimes c_{q}^{'} + (-1)^{p}c_{p} \otimes \partial^{'}c_{q}^{'}  ,可见 \overline{\partial} 是集合 C_{p} \times C_{q}^{'} 上的一个双线性函数,它诱导出张量积的同态。它满足性质 \overline{\partial}^{2}=0 ;

张量积的增广链复形:设 \left \{ \mathcal{C},\varepsilon \right \}, \left \{ \mathcal{C}^{'},\varepsilon^{'} \right \} 是增广链复形,用同态 \overline{\varepsilon} 来增广 \mathcal{C} \otimes \mathcal{C}^{'} ,这里 \overline{\varepsilon} 是复合映射 C_{0} \otimes C_{0}^{'} \overset{\varepsilon \otimes \varepsilon^{'}}{\rightarrow} Z \otimes Z \overset{\cong}{\rightarrow} Z ,可以验证 \overline{\varepsilon} 是满射,而且 \overline{\varepsilon} \circ \overline{\partial}=0 

(5)同调叉积:设 \mathcal{C}, \mathcal{C}^{'} 是链复形,定义一个同态 \Theta: H_{p}(\mathcal{C}) \otimes H_{q}(\mathcal{C}^{'}) \to H_{p+q}(\mathcal{C} \otimes \mathcal{C}^{'}) 为 \Theta\left ( \left \{ z_{p} \right \} \otimes \left \{ z_{q}^{'} \right \} \right )=\left \{ z_{p} \otimes z_{q}^{'} \right \} ,其中 z_{p} 是 \mathcal{C} 的一个p维闭链,z_{p}^{'} 是 \mathcal{C}^{'} 的一个q维闭链, z_{p} \otimes z_{q}^{'} 是 \mathcal{C} \otimes \mathcal{C}^{'} 的一个闭链。它是一个自然的单态射,即关于链映射是自然的,称为两个链复形(或者说是两个同调类)的同调叉积,可以记作 \left \{ z_{p} \right \} \times \left \{ z_{q}^{'} \right \},其结果是一个p+q维的同调类;

拓扑空间的同调叉积:对拓扑空间X, Y,单态射 \times: H_{p}(X) \otimes H_{q}(Y) \to H_{p+q}(X \times Y) 称为同调叉积,它等于复合映射 H_{p}(X) \otimes H_{q}(Y) \overset{\Theta}{\rightarrow} H_{p+q}(\mathcal{C}(X) \otimes \mathcal{C}(Y)) \overset{\mu_{\ast}}{\rightarrow} H_{p+q}(X \times Y) ,其中 \Theta 是由包含映射诱导的同调叉积,\mu_{\ast} 是由Eilenberg-Zilber链同伦等价诱导的。叉积的行为有点类似于笛卡尔积,对两个同调类 a_{p} \in H_{p}(X), b_{q} \in H_{q}(Y) ,运算结果为一个p+q维同调类 a_{p} \times b_{q} \in H_{p+q}(X \times Y)  

(6)上链复形的张量积:设 \mathcal{C}=\left \{ C_{p}, \partial_{p} \right \}, \mathcal{C}^{'}=\left \{ C_{p}^{'}, \partial_{p}^{'} \right \} 是两个链复形,R是含幺交换环,则对应的上链复形为 Hom(C_{p},R), Hom(C_{p}^{'},R) ,其张量积 Hom(\mathcal{C},R) \otimes Hom(\mathcal{C}^{'},R) 是这样一个上链复形,它的m维上链群是 \bigoplus_{p+q=m}Hom(C_{p},R) \otimes Hom(C_{q}^{'},R) ;

上边缘算子:\overline{\delta}(f^{p} \otimes g^{q})=\delta f^{p} \otimes g^{q} \oplus (-1)^{p} f^{p} \otimes \delta^{'} g^{q} 

(7)上链叉积:设 \mathcal{C}=\left \{ C_{p}, \partial_{p} \right \}, \mathcal{C}^{'}=\left \{ C_{p}^{'}, \partial_{p}^{'} \right \} 是两个链复形,R是含幺交换环,同态 \theta: Hom(C_{p},R) \otimes Hom_{q}(C_{q}^{'},R) \to Hom((\mathcal{C} \otimes \mathcal{C}^{'})_{p+q},R) 定义为 \left \langle \theta(f^{p} \otimes g^{q}), c_{r} \otimes c_{s}^{'} \right \rangle=\left \langle f^{p},c_{r} \right \rangle \cdot \left \langle g^{q},c_{s} ^{'} \right \rangle ,约定 p \neq r 时 \left \langle f^{p}, c_{r} \right \rangle = 0 ,q\neq s 时 \left \langle g^{q},c_{s}^{'} \right \rangle = 0 。同态 \theta 是一个自然的上链映射,称为上链的叉积,它对一个p维上链和一个q维上链,运算结果为一个p+q维上链。上链叉积也可以用R模同态来定义 \theta: Hom(C_{p},R) \otimes_{R} Hom_{q}(C_{q}^{'},R) \to Hom((\mathcal{C} \otimes \mathcal{C}^{'})_{p+q},R) 。

上链叉积公式:对 T: \Delta_{m} \to X \times Y ,有 \left \langle c^{p} \times c^{q},T \right \rangle = \left \langle \theta(c^{p} \otimes c^{q}), v(T) \right \rangle = \left \langle c^{p}, \pi_{1} \cric T \circ l(e_{0},...,e_{p}) \right \rangle \cdot \left \langle c^{q}, \pi_{2}\circ T \circ l(e_{p},...,e_{m}) \right \rangle ;

上同调叉积:两个链复形的上同调叉积 \Theta: H^{p}(\mathcal{C};R) \otimes H^{q}(\mathcal{C}^{'};R) \to H^{p+q}(\mathcal{C} \otimes \mathcal{C}^{'};R) 定义为 \Theta(\left \{ a^{p} \right \} \otimes \left \{ b^{q} \right \}) = \left \{ \theta(a^{p} \otimes b^{q}) \right \} ,其中 a^{p},b^{q} 分别是 \mathcal{C}, \mathcal{C}^{'} 的p维和q维上闭链,\theta(a^{p} \otimes b^{q}) 是一个p+q维上闭链;

拓扑空间的上同调叉积:对拓扑空间X, Y,上链映射 \times: H^{p}(X;R) \otimes H^{q}(Y;R) \to H^{p+q}(X \times Y;R) 称为上同调叉积,它等于复合映射 H^{p}(X;R) \otimes H^{q}(Y;R) \overset{\Theta}{\rightarrow} H^{p+q}(\mathcal{C}(X) \otimes \mathcal{C}(Y);R) \overset{v^{\ast}}{\rightarrow} H^{p+q}(X \times Y;R) ,其中 \Theta 是由包含映射诱导的上同调叉积,\mu_{\ast} 是由Eilenberg-Zilber链同伦等价诱导的。对两个上同调类 a^{p} \in H^{p}(X), b^{q} \in H^{q}(Y) ,运算结果为一个p+q维上同调类 a^{p} \times b^{q} \in H^{p+q}(X \times Y) 。上同调叉积也可以用模同态来定义 H^{p}(X;R) \otimes_{R} H^{q}(Y;R) \to H^{p+q}(X \times Y;R) 

(8)上同调环的张量积:给定拓扑空间X, Y,上同调环分别为 H^{\ast}(X;R), H^{\ast}(Y;R) ,上同调环的张量积为 H^{\ast}(X;R) \otimes_{R} H^{\ast}(Y;R) ,其上积运算定义为

(\alpha \otimes \beta) \cup (\alpha^{'} \otimes \beta^{'})=(-1)^{(dim \beta)(dim \alpha^{'})}(\alpha \cup \alpha^{'}) \otimes (\beta \cup \beta^{'})

这样上同调环的张量积就赋予了环结构,构成一个新的上同调环

 

主要定理:

(1)Ext函子的性质:

Ext( \, \bigoplus A_{i},B) \cong \prod \, Ext(A_{i},B) ;

Ext(A, \prod B_{i}) \cong \prod Ext(A, B_{i}) ;

若A是自由的,则 Ext(A,B)=0 ;

若B是可除的,则 Ext(A,B)=0 

给定B,则有一个正合序列 0 \to Hom(Z/m,B) \to B \overset{m}{\rightarrow} B \to Ext(Z/m, B) \to 0 ,可见 Ext(Z/m, B) \cong B/mB

(2)上同调的万有系数定理:若 \mathcal{C} 是自由链复形,G是Abel群,那么就有一个正合序列 0 \to Ext(H_{p-1}(\mathcal{C}),G) \to H^{p}(\mathcal{C};G) \overset{k}{\rightarrow} Hom(H_{p}(\mathcal{C}),G) \to 0 ,这是 k 是Kronecker映射。它是分裂的,但不是自然分裂,它关于链映射诱导的同态是自然的。对拓扑空间偶 (X, A),定理结论可以写成 0 \to Ext(H_{p-1}(X,A),G) \to H^{p}(X,A;G) \overset{k}{\rightarrow} Hom(H_{p}(X,A),G) \to 0 。

该定理说明了带任意系数的上同调群与下同调群的关系,即 H^{p} 只依赖于 H_{p} 和 H_{p-1} ,而Kronecker映射的核为 coker(k)=Ext(H_{p-1}(\mathcal{C}),G) ,它只依赖于群 H_{p-1} 和G

(3)设 \mathcal{C}, \mathcal{D} 是自由链复形,f: \mathcal{C} \to \mathcal{D} 是链映射,如果诱导的下同调同态 f_{\ast}: H_{i}(\mathcal{C}) \to H_{i}(\mathcal{D}) 对 i=p 和 i=p-1 是同构,那么诱导的上同调同态 f^{\ast}: H^{p}(\mathcal{D};G) \to H^{p}(\mathcal{C};G) 也是同构

(4)设 \mathcal{C}=\left \{ S_{p}, \partial_{p} \right \} 是链复形,F是一个域,那么带F系数的上链群 S^{p}=Hom(S_{p},F) 和张量积 S_{p} \otimes F 都是域F上的向量空间;带F系数的上同调群 H^{p}(\mathcal{C};F) 和下同调群 H_{p}(\mathcal{C};F) 也是F上的向量空间,并且它们互为对偶空间。如果A和B都是F上的向量空间,那么A到B的所有线性变换组成的群 Hom_{F}(A,B) 也是F上的向量空间

(5)带域系数的同调与上同调的关系:若 \mathcal{C} 是自由链复形,F是一个域,那么就是有一个自然的向量空间同构 H^{p}(\mathcal{C};F) \cong Hom_{F}(H_{p}(\mathcal{C};F),F) ,即向量空间 H^{p}(\mathcal{C};F) 能以自然的方式等同于向量空间 H_{p}(\mathcal{C};F) 的对偶空间 Hom_{F}(H_{p}(\mathcal{C};F),F) ;

对拓扑空间偶 (X, A),定理结论可以写成 H^{p}(X,A;F) \cong Hom_{F}(H_{p}(X,A;F),F)  ,即向量空间 H^{p}(X,A;F) 能以自然的方式等同于向量空间 H_{p}(X,A;F) 的对偶空间 Hom_{F}(H_{p}(X,A;F),F) 。当 H_{p}(X,A;F) 是有限维时就有同构 H^{p}(X,A;F) \cong H_{p}(X,A;F) ,这个同构是非自然的。

例子:

在微分几何中处理紧致流形时通常使用实数域作为系数,这时同调向量空间与上同调向量空间是对偶的

(6)Tor函子的性质:

交换律:A \ast B \cong B \ast A ;

双线性:\left ( \bigoplus_{i} A_{i} \right ) \ast \left ( \bigoplus_{j} B_{j} \right )= \bigoplus_{i} \bigoplus_{j}(A_{i} \ast b_{j}) ;

若A或B是无挠的,则 A \ast B = 0 ;

给定B,则有一个正合序列 0 \to (Z/m) \ast B \to B \overset{m}{\rightarrow} B \to (Z/m) \otimes B \to 0 ,可见 (Z/m) \ast B \cong ker(B \overset{m}{\rightarrow} B) 

(7)同调的万有系数定理:若 \mathcal{C} 是自由链复形,G是Abel群,那么就有一个正合序列 0 \to H_{p}(\mathcal{C}) \otimes G \to H_{p}(\mathcal{C};G) \to H_{p-1}(\mathcal{C}) \ast G \to 0 ,它是分裂的,但不是自然分裂,它关于链映射诱导的同态是自然的。对拓扑空间偶 (X, A),定理结论可以写成 0 \to H_{p}(X,A) \otimes G \to H_{p}(X,A;G) \to H_{p-1}(X,A) \ast G \to 0 。

该定理说明了带任意系数的同调群与整系数同调群的关系

(8)设 \mathcal{C}, \mathcal{D} 是自由链复形,f: \mathcal{C} \to \mathcal{D} 是链映射,如果诱导的同态 f_{\ast}: H_{i}(\mathcal{C}) \to H_{i}(\mathcal{D}) 对 i=p 和 i=p-1 是同构,那么诱导的同态 f_{\ast}: H_{p}(\mathcal{C};G) \to H_{p}(\mathcal{D};G) 对任意的G都是一个同构

(9)万有系数定理的对偶性:若 \mathcal{C} 是自由链复形,G是Abel群,并且 \mathcal{C} 在每一维数下的同调和上同调都是有限生成的,那么就有正合序列

0 \to Ext(H^{p+1}(\mathcal{C}),G) \to H_{p}(\mathcal{C};G) \to Hom(H^{p}(\mathcal{C}),G) \to 0

0 \to H^{p}(\mathcal{C}) \otimes G \to H^{p}(\mathcal{C};G) \to H^{p+1}(\mathcal{C}) \ast G \to 0

它们是分裂的,但不是自然分裂,它们关于链映射诱导的同态是自然的。对拓扑空间偶,结论中把 \mathcal{C} 换成 (X, A) 即可

推广:把 \mathcal{C} 在每一维数下都是有限生成的条件改成在低于某个维数是零调的,则结论仍然成立

(10)链复形张量积的性质:

若 f: \mathcal{C} \to \mathcal{D}, \, f^{'}: \mathcal{C}^{'} \to \mathcal{D}^{'} 是链映射,那么映射的张量积 f \otimes f^{'} 也是链映射;

两个自由链复形的张量积也是自由链复形。实际上,若 \left \{ a_{i}^{p} \right \}, \left \{ b_{j}^{q} \right \} 分别是 C_{p}, C_{p}^{'} 的一个基,那么 \left \{ a_{i}^{p} \otimes b_{j}^{q} \,|\, p+q=m \right \} 就是群 (\mathcal{C} \otimes \mathcal{C}^{'})_{m} 的一个基

(11)若K, L是单纯复形并且K是局部有限的,则 \left | K \right | \times \left | L \right | 是一个正则CW复形,它是可三角剖分的,其中每一个胞腔 \sigma \times \tau, \, \sigma \in K, \tau \in L 是一个子复形的可剖空间,设 \mathcal{D}(K \times L) 是 \left | K \right | \times \left | L \right | 的胞腔链复形,那么就有同构

\mathcal{C}(K) \otimes \mathcal{C}(L) \cong \mathcal{D}(K \times L) 。这说明张量积可用来计算积空间的同调

(12)链复形的Kunneth定理:若 \mathcal{C} 是一个自由链复形,\mathcal{C}^{'} 是一个链复形,那么就有一个正合序列

0 \to \bigoplus_{p+q=m} H_{p}(\mathcal{C}) \otimes H_{q}(\mathcal{C}^{'}) \overset{\Theta }{\rightarrow} H_{m}(\mathcal{C} \otimes \mathcal{C}^{'}) \to \bigoplus_{p+q=m} H_{p-1}(\mathcal{C})\ast H_{q}(\mathcal{C}^{'}) \to 0

它关于链映射诱导的同态是自然的,如果 \mathcal{C}^{'} 也是自由的,那么这个序列是分裂的,但不是自然分裂。这里 \Theta 是同调叉积。

该定理说明了张量积的同调群与每个链复形同调群的关系,可以用来计算两个链复形张量积的同调

(13)设 f: \mathcal{C} \to \mathcal{D}, \, f^{'}: \mathcal{C}^{'} \to \mathcal{D}^{'} 都是链映射,并且 \mathcal{C}, \mathcal{D} 是自由的,它们在所有维数下都诱导同调的同构,那么 f \otimes f^{'}: \mathcal{C} \otimes \mathcal{C}^{'} \to \mathcal{D} \otimes \mathcal{D}^{'} 在所有维数下均诱导同调的同构。

推论:若K, L是单纯复形并且K是局部有限的,则 H_{m}(\left | K \right | \times \left | L \right |) \cong \bigoplus_{p+q=m} \left [ H_{p}(K) \otimes H_{q}(L) \oplus H_{p-1}(K) \ast H_{q}(L) \right ] 

(14)若链复形 \mathcal{C}=\left \{ C_{p}, \partial_{p} \right \}, \mathcal{C}^{'}=\left \{ C_{p}^{'}, \partial_{p}^{'} \right \} 的链群都是域F上的向量空间,边缘算子 \overline{\partial} 是向量空间的线性变换,那么同调群 H_{p}(\mathcal{C}), H_{q}(\mathcal{C}^{'}) 都是F上的向量空间,并且有向量空间的自然同构

\bigoplus_{p+q=m} H_{p}(\mathcal{C}) \otimes_{F} H_{q}(\mathcal{C}^{'}) \cong H_{m}(\mathcal{C} \otimes_{F} \mathcal{C}^{'}) 

(15)带域系数的Kunneth定理:若 \mathcal{C}=\left \{ C_{p}, \partial_{p} \right \}, \mathcal{C}^{'}=\left \{ C_{p}^{'}, \partial_{p}^{'} \right \} 是自由链复形,F是一个域,那么就有一个自然的同构

\bigoplus_{p+q=m} H_{p}(\mathcal{C};F) \otimes_{F} H_{q}(\mathcal{C}^{'};F) \cong H_{m}(\mathcal{C} \otimes \mathcal{C}^{'};F)

(16)Eilenberg-Zilber定理:对任意两个拓扑空间X, Y,都有链复形之间的链同伦等价 \mathcal{C}(X) \otimes \mathcal{C}(Y) \simeq \mathcal{C}(X \times Y) ,它关于由连续映射诱导的链映射是自然的。

这个链同伦等价公式:设 \pi_{i}: X \times Y \to X, \pi_{2}: X \times Y \to Y 是投影映射,定义链映射 v: S_{m}(X \times Y) \to \bigoplus_{p+q=m} S_{p}(X) \otimes S_{q}(Y) 为

v(T)=\sum_{i=0}^{m}[\pi_{1} \circ T \circ l(e_{0},...,e_{i})] \otimes [\pi_{2} \circ T \circ l(e_{i},...,e_{m})]

那么 v 是一个保持增广的自然链同伦等价。使用映射 v 和类似的公式可以定义它的链同伦逆映射 \mu 

(17)拓扑空间的Kunneth定理:给定拓扑空间X, Y,那么就有一个正合序列

0 \to \bigoplus_{p+q=m} H_{p}(X) \otimes H_{q}(Y) \to H_{m}(X \times Y) \to \bigoplus_{p+q=m} H_{p-1}(X)\ast H_{q}(Y) \to 0

它关于由连续映射诱导的链映射是自然的,它是分裂的,但不是自然分裂。

带域系数的版本:若F是一个域,那么就有一个自然的向量空间同构

\bigoplus_{p+q=m} H_{p}(X;F) \otimes_{F} H_{q}(Y;F) \cong H_{m}(X \times Y;F) 

该定理描述了积空间的同调群与每个因子空间同调群的关系

(18)上同调的Kunneth定理:若 \mathcal{C}, \mathcal{C}^{'} 都是在低于某个维数时为零的自由链复形,并且在每一个维数下的同调群都是有限生成的,那么就有一个自然的正合序列

0 \to \bigoplus_{p+q=m}H^{p}(\mathcal{C}) \otimes H^{q}(\mathcal{C}^{'}) \overset{\Theta}{\rightarrow} H^{p+q}(\mathcal{C} \otimes \mathcal{C}^{'}) \to \bigoplus_{p+q=m}H^{p+1}(\mathcal{C}) \ast H^{q}(\mathcal{C}^{'}) \to 0

这个序列是分裂的,但不是自然分裂。

带域系数的版本:若F是一个域,那么就有一个自然的同构

\bigoplus_{p+q=m} H^{p}(\mathcal{C};F) \otimes_{F} H^{q}(\mathcal{C}^{'};F) \cong H^{m}(\mathcal{C} \otimes \mathcal{C}^{'};F)

(19)拓扑空间的上同调Kunneth定理:给定拓扑空间X, Y,若 H_{i}(X), H_{i}(Y) 对每一个 i 都是有限生成的,那么就有一个自然的正合序列

0 \to \bigoplus_{p+q=m}H^{p}(X) \otimes H^{q}(Y) \overset{\times}{\rightarrow} H^{p+q}(X \times Y) \to \bigoplus_{p+q=m}H^{p+1}(X) \ast H^{q}(Y) \to 0

这个序列是分裂的,但不是自然分裂。

带域系数的版本:若F是一个域,那么就有一个自然的向量空间同构

\bigoplus_{p+q=m} H^{p}(X;F) \otimes_{F} H^{q}(Y;F) \cong H^{m}(X \times Y;F)

(20)叉积的性质:

反交换性:如果 \lambda: X \times Y \to Y \times X 是颠倒坐标的映射,那么 \lambda^{\ast}:(b^{q} \times a^{p})=(-1)^{pq} a^{p} \times b^{q} ;

结合律:在上同调群 H^{\ast}(X \times Y \times Z;R) 中,有 (\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma)  

(21)叉积与上积的关系(Lefschetz):设 d: X \to X \times X 是由 d(x)=(x,x) 给出的对角映射,诱导的上同调的同态为 d^{\ast}: H^{p}(X) \to H^{p}(X \times X) ,那么 d^{\ast}(a^{p} \times b^{q})=a^{p} \cup b^{q} 

这个关系说明了上同调具有环结构,而同调则没有这种结构。同调与上同调都有叉积,但只有在上同调中才有叉积与对角同态的复合运算

(22)积空间的上积计算:在上同调环 H^{\ast}(X \times Y;R) 中,有 (\alpha \times \beta) \cup (\alpha^{'} \times \beta^{'})=(-1)^{(dim \beta)(dim \alpha^{'})}(\alpha \cup \alpha^{'}) \times (\beta \cup \beta^{'}) 

(23)上同调环的张量积:给定拓扑空间X, Y和含幺交换环R,它们的上同调环分别为 H^{\ast}(X;R), H^{\ast}(Y;R) ,张量积为 H^{\ast}(X;R) \otimes_{R} H^{\ast}(Y;R) ,其上积运算定义为

(\alpha \otimes \beta) \cup (\alpha^{'} \otimes \beta^{'})=(-1)^{(dim \beta)(dim \alpha^{'})}(\alpha \cup \alpha^{'}) \otimes (\beta \cup \beta^{'})

这样上同调环的张量积就赋予了环结构,构成一个新的上同调环

(24)上同调环的Kunneth定理:给定拓扑空间X, Y,若 H_{i}(X) 对每一个 i 都是有限生成的,那么整系数上同调环的叉积 \times: H^{\ast}(X) \otimes H^{\ast}(Y) \to H^{\ast}(X \times Y) 是环的单同态。如果F是一个域,那么就有一个环同构

H^{\ast}(X;F) \otimes_{F} H^{\ast}(Y;F) \cong H^{\ast}(X \times Y;F)

 

流形上的对偶


(1)复形的联接:设K,L是欧氏空间 E^{J} 中的复形,s=v_{0}...v_{m} \in K 是K的任意一般单形,t=w_{0}...w_{n} \in L 是L的任意一般单形,并且顶点 v_{0},...,v_{m},...,w_{0},...,w_{n} 是相互独立的,令 s \ast t = v_{0}...v_{m}w_{0}...w_{n} 表示它们所张成的单形,如果所有单形 s \ast t 和它们的面组成的集族是一个单纯复形,就把这个复形称为K和L的联接,记作 K \ast L

(2)设 s \in K 是复形K中的一个单形

单形的星形  :单形 s 在复形K中的星形,是那些以 s 为面的所有单形的内部之并,记作 St \, s ,它是开集;

闭星形:是星形的闭包 \overline{St} \, s ,它是复形K的以 s 为面的所有单形之并,也是K的一个子复形的可剖空间;

链环:集合 \overline{St} \, s - St \, s 称为链环,记作 Lk \, s ,它是K的在 \overline{St} \, s 中但不与 s 相交的所有单形之并,也是K的一个子复形的可剖空间。

(2)n维同调流形:对拓扑空间偶 (X, A) ,如果X的每一个不在A中的点x,局部同调群 H_{i}(X,X-x) 当 i=n 时是无限循环群,当 i\neq n 时为零,就把拓扑空间偶 (X, A) 称为n维相对同调流形,A为空集时称为n维同调流形

例子:

同调流形是比拓扑流形更广泛的一类空间,任意n维拓扑流形M都是n维同调流形,另外也存在着不是拓扑流形的同调流形;

如果M是一个n维带边流形,那么偶 (M, Bd M) 是一个n维相对同调流形

(3)单形的对偶块:设X是一个局部有限的复形,sdX为它的首次重心重分。sdX的每个顶点均为X的某个单形的重心,因此可按X的单形的维数递增的次序对X的顶点赋予偏序,它在sdX的每个单形上诱导一个线性序,这样sdX的单形可以表示成 \widehat{\sigma}_{i_{1}} \widehat{\sigma}_{i_{2}} ... \widehat{\sigma}_{i_{k}} 的形式,其中 \sigma_{i_{1}} \succ \sigma_{i_{2}} \succ ... \succ \sigma_{i_{k}} 。给定X的一个单形 \sigma ,则sdX的所有以 \widehat{\sigma} 为初始顶点的开单形之并恰好是 Int \, \sigma 。而sdX的所有以 \widehat{\sigma} 为最后一个顶点的开单形之并,称为对偶于 \sigma 的块,记作 D(\sigma) 。它的作用类似于CW复形中的开胞腔的作用。把 D(\sigma) 的闭块 \overline{D}(\sigma) 称为对偶于 \sigma 的闭块,它等于sdX的所有以 \widehat{\sigma} 为最后一个顶点的单形之并,它是 sdX 的一个子复形的可剖空间

(4)对偶链复形:

对偶块分解:设X是一个n维同调流形(这时它的每个复形必定是有限的),那么对每个对偶块 D(\sigma) , (\overline{D}(\sigma), \overline{D}(\sigma) - D(\sigma)) 都具有 n-k 维胞腔模其边缘的同调,把所有对偶块 D(\sigma) 组成的集族称为X的对偶块分解;

p维对偶骨架:把X的至多p维的对偶块之并,称为X的p维对偶骨架,记作 X_{p} ,它是sdX的子复形的可剖空间;

p维对偶链群: D_{p}(X)=H_{p}(X_{p},X_{p-1}) ,它是 C_{p}(sdX) 的一个自由Abel子群。注意当 i \neq p 时群 H_{i}(X_{p},X_{p-1})=0 ;

边缘算子: \partial_{p}: D_{p}(X) \to D_{p-1}(X) ,定义为复合映射 H_{p}(X_{p},X_{p-1}) \overset{\partial_{\ast}}{\rightarrow} H_{p-1}(X_{p-1}) \overset{j_{\ast}}{\rightarrow} H_{p-1}(X_{p-1}, X_{p-2}) ,其中同态 j_{\ast} 是包含映射 j: (X_{p-1}) \to (X_{p-1},X_{p-2}) 诱导的;

对偶链复形:把链复形 \mathcal{D}(X)=\left \{ D_{p}(X), \partial_{p} \right \} 称为X的对偶链复形。对偶链复形的作用类似于胞腔链复形对CW复形起的作用

(5)卡积:设X是拓扑空间,R的含幺交换环,卡积是一个双线性映射 \cap: S^{p}(X;R) \otimes S_{p+q}(X;R) \to S_{q}(X;R) ,设 x^{p} \in S^{p}(X;R), \, y_{p+q} \in \sum_{i=1}^{k} r_{i}T_{i} \in S_{p+q}(X;R), \, T_{i}: \Delta_{p+q} \to X ,则卡积定义为 

x^{p} \cap y_{p+q} =\sum_{i=1}^{k} r_{i} \left \langle x^{p}, T_{i} \circ l(e_{0},...,e_{p}) \right \rangle \cdot T_{i} \circ l(e_{p},e_{p+1},...,e_{q})

称为p维上链对p+q维下链的卡积,结果为一个q维下链,它是 T_{i} 在 \Delta_{p+q} 的后q维上的限制,系数为 T_{i} 在 \Delta_{p+q} 的前p维上的赋值与系数 r_{i} 的乘积。注意如果是单纯复形,则可以简化为

x^{p} \cap y_{p+q} =\sum_{i=1}^{k} r_{i} \left \langle x^{p}, [v_{0},...,v_{p}] \right \rangle \cdot [v_{p},v_{p+1},...,v_{q}]

同调群的卡积:链群的卡积诱导同调群的卡积 \cap: H^{p}(X;R) \otimes H_{p+q}(X;R) \to H_{q}(X;R) ;

相对卡积:\cap: H^{p}(X,A;R) \otimes H_{p+q}(X,A;R) \to H_{q}(X,A;R) ;

更一般的相对卡积: \cap:H^{p}(X,A;R) \otimes H_{p+q}(X,A \cup B;R) \to H_{q}(X, B;R) ,当 \left \{ A,B \right \} 是一个切除对时,它有定义

(6)同调流形的定向:设X是一个可剖分的n维同调流形,如果能对X的所有n维单形 \sigma_{i} 定向,使得它们的形式和 \gamma=\sum \sigma_{i} 是一个闭链(当X是非紧致的时这个闭链可能是无穷的),则称X是可定向的,把该闭链 \gamma 称为X的定向闭链;

相对同调流形的定向:设 (X,A) 是一个可剖分的n维相对同调流形,如果能对X的所有不在A中的n维单形 \sigma_{i} 定向,使得它们的和 \gamma=\sum \sigma_{i} 是 (X, A) 的闭链,则称 (X, A) 是可定向的,把该闭链 \gamma 称为 (X, A) 的定向闭链

(7)定向类:设X是一个可剖分的n维同调流形,X_{i} 是X的一个分支,如果X是可定向的,那么 H_{n}(X_{i}) 是无限循环的,把该群的一个生成元 \Gamma^{(i)}  称为 X_{i} 的一个定向类。把各个类 \Gamma^{(i)} 在由包含映射诱导的同构 \bigoplus_{i}H_{n}(X_{i}) \cong H_{n}(X) 下的像称为X的一个定向类,记作 \Gamma \in H_{n}(X) 。如果X是不可定向的,那么定向类对系数群Z/2仍然有定义,即定向类 \Gamma_{(2)}^{(i)} 是 H_{n}(X_{i};Z/2) 唯一的非平凡元,把这些定向类在 H_{n}(X;Z/2) 中的像记作 \Gamma_{(2)} ,称为X在Z/2上的一个定向类。\Gamma^{(i)} 可由分支 X_{i} 的所有n维定向单形之和来表示,同调类 \Gamma 可由X的所有n维定向单形之和 \gamma=\sum \sigma_{i} 来表示,因此定向类 \Gamma 定义了X的一种定向。类似地,\Gamma_{(2)} 由X的带系数 [1] \in Z/2 的所有n维单形之和表示。

相对定向类:对可剖分的n维相对同调流形 (X, A) ,X_{i} 是 X-A 的一个分支,如果 (X, A) 是可定向的,那么 H_{n}(\overline{X}_{i}, \overline{X}_{i} \cap A) 是无限循环的,把该群的一个生成元 \Gamma^{(i)}  称为 (\overline{X}_{i}, \overline{X}_{i} \cap A) 的一个定向类。把各个类 \Gamma^{(i)} 在由包含映射诱导的同构 \bigoplus_{i}H_{n}(\overline{X}_{i}, \overline{X}_{i} \cap A) \cong H_{n}(X,A) 下的像称为 (X, A) 的一个定向类,记作 \Gamma \in H_{n}(X,A) 。如果X是不可定向的,那么定向类对系数群Z/2仍然有定义,即定向类 \Gamma_{(2)}^{(i)} 是 H_{n}(\overline{X}_{i}, \overline{X}_{i} \cap A;Z/2) 唯一的非平凡元,把这些定向类在 H_{n}(X,A;Z/2) 中的像记作 \Gamma_{(2)} ,称为 (X, A) 在Z/2上的一个定向类

(8)流形定向的其他定义方式:

用局部同调群来定义:n维流形M的定向,是以连续的方式在M的每一点x处取定 H_{n}(M,M-x) 的一个生成元,所取的这些生成元构成的集合就称为M一个定向。也即定向是一个映射 S: M \to \left \{ H_{n}(M,M-x) \right \}_{x \in M} ,对任意点 x \in M ,S(x) 是 H_{n}(M,M-x) 的一个生成元;对任意点x,存在邻域 U 及 H_{n}(M,M-U) 的生成元 a ,使得对任意的点 y \in U,都满足 a 在包含映射诱导的同态 j_{y}^{U}: H_{n}(M,M-U) \to H_{n}(M,M-y) 下的像恰好等于 S(y) ,这个条件是为了保证定向S的连续性;

曲线的定向:可以用曲线的走向或曲线的切向量来定义;

曲面的定向:欧氏空间 E^{3} 中曲面的定向可以用曲面的法向量给出。如果曲面的每一点处存在非零法向量,这样得到一个连续的法向量场,称这个曲面是可定向的。如果曲面上不存在处处非零的连续法向量场,则称曲面是不可定向的;

微分流形的定向:一个n维微分流形称为可定向的,如果它存在一个n次微分形式 \omega 在流形的每一点处都不为零,并且称这个流形由 \omega 定向,否则流形就是不可定向的。

可以证明,这些定义是等价的

(9)Riemann流形:在微分流形的每一个切空间、余切空间上以“可微的方式”定义度量,使它们都成为欧氏空间,这样的微分流形称为Riemann流形

(10)定向相反的映射:设 \zeta 是紧致可定向的n维流形M的一个定向类,如果连续映射 f: M \to M 使得诱导同态 f_{\ast}: H_{n}(M) \to H_{n}(M) 是同构且 f_{\ast}(\zeta)=- \zeta ,则称 f 是使M定向相反的映射

(11)对偶配对:设A,B是相同秩的自由Abel群,C是无限循环群,如果同态 f: A \otimes B \to C 满足对A的基 a_{1},...,a_{m} 和B的基 b_{1},...,b_{m} ,f(a_{i} \otimes b_{j})=\delta_{ij} \gamma 对所有 i,j=1,...,m 都成立,其中 \gamma 是C的一个生成元,则称同态 f 是一个对偶配对

(12)保持对径点的映射(奇映射):点x的对径点为-x,连续映射 f:S^{n} \to S^{m} 称为奇映射或保持对径点的映射,如果对所有 x \in S^{n} ,有 f(-x) = - f(x) 

(13)交积:设X是一个可剖分的、连通的n维紧致流形,R是含幺交换环,当X不可定向时令 R=Z/2 ,给定p维和q维同调类 a_{p} \in H_{p}(X;R), b_{q} \in H_{q}(X;R) ,而 \Gamma \in H_{n}(X;R) 是X的一个n维的定向类,选取上同调类 a^{n-p},b^{​{n-q}} 使得

a^{n-p} \cap \Gamma = a_{p}, b^{n-q} \cap \Gamma = b_{q}

那么定义同调类的交积为 a_{p} \cdot b_{q}=(a^{n-p} \cup b^{n-q}) \cap \Gamma ,交积结果的维数是 p+q-n ,结果的符号依赖于定向类 \Gamma 。交积表示这两个闭链的几何交

(14)同调交环:设X是一个可剖分的、连通的n维紧致流形,R是含幺交换环,当X不可定向时令 R=Z/2 ,由庞加莱对偶同构 \cap \Gamma :H^{\ast}(X;R) \cong H_{\ast}(X;R) ,可知上同调环诱导一个下同调环,称为X的同调环,其乘法就是两个同调类的交积 \alpha \cdot \beta 

(15)Bockstein同态:设 \mathcal{C}=\left \{ C_{p},\partial_{p} \right \} 是自由链复形,给定Abel群的短正合序列 0 \to G \to G^{'} \to G^{''} \to 0 ,对相伴的两个短正合序列

0 \to C_{p} \otimes G \to C_{p} \otimes G^{'} \to C_{p} \otimes G^{''} \to 0 

0 \to Hom(C_{p},G) \to Hom(C_{p},G^{'}) \to Hom(C_{p},G^{''}) \to 0

根据之字形引理,可以得到两个同态

\beta_{\ast}: H_{p}(\mathcal{C};G^{''}) \to H_{p-1}(\mathcal{C};G)

\beta^{\ast}: H^{p}(\mathcal{C};G^{''}) \to H^{p+1}(\mathcal{C};G)

称为与系数群序列相伴的Bockstein同态,或者Bockstein运算,它们关于连续映射诱导的同态是自然的

(16)积邻域:设M是一个n维带边流形,如果有一个同胚 h: Bd \, M \times [0,1) \to U ,它的像是M中的一个开集,使得对每个 x \in M 都有 h(x,0)=x ,就称边界 BdM 在M中有一个积邻域。实际上这样的邻域总是存在的

(17)子复形的星形:设A是有限复形X的一个子复形的可剖空间,定义 St(A,X) 是当 \sigma 遍历X的位于A中的所有单形时,所有星形集合 St(\sigma, X) 的并,称为A在X中的星形;

性质:如果C是X的所有不与A相交的单形组成的集族,那么有 St(A,X)=\left | X \right |-\left | A \right | 。如果A是X的一个满子复形的可剖空间,那么A是 St(A, X) 的形变收缩核

(18)多面体:设空间偶 (X, A) 是可剖分的,如果 D \subset X ,并且存在 (X, A) 的某个剖分使得D是一个子复形的可剖空间,则称D是 (X, A) 中的多面体,若A为空集,则称D是X中的多面体

 

主要定理:

(1)复形联接存在的条件:设K,L是欧氏空间 E^{J} 中不相交的复形,如果 K \ast L 存在,那么 \left | K \ast L \right |  等于把 \left | K \right | 的点与 \left | L \right | 的点连接起来的所有线段之并,两条这样的线段至多相交于一个公共端点。反之,如果每一对连接 \left | K \right | 的点与 \left | L \right | 的点的线段至多相交于一个公共端点,那么 K \ast L 存在

(2)复形联接的性质:

设 K \ast L, M \ast N 都有定义,K是局部有限的,如果有同伦等价 \left | K \right | \simeq \left | M \right |, \left | L \right | \simeq \left | N \right | ,那么 \left | K \ast L \right | \simeq \left | M \ast N \right | ;

交换律:K \ast J = J \ast K ;

结合律:(J \ast K) \ast L=J \ast (K \ast L) ;

(3)若 K \ast L 存在,\left | L \right | \simeq S^{n-1} ,那么对所有 i ,有约化同调的同构 \widetilde{H}_{i+n}(K \ast L) \cong \widetilde{H}_{i}(K)  

(4)复形的局部同调群:设 s 复形K的一个k维单形,\widehat{s} 是它的重心,那么当 Lk \, s=\varnothing 时 H_{i}(\left | K \right |, \left | K \right |-\widehat{s})=H_{i}(s, Bd \, s) ,当 Lk \, s \neq \varnothing 时 H_{i}(\left | K \right |, \left | K \right |-\widehat{s})=\widetilde{H}_{i-k-1}(Lk \, s) 

(5)可剖分空间的局部同调群: 设 (X, A) 是一个可剖分的n维相对同调流形,s 是X的一个不在A中的k维单形,\widehat{s} 是它的重心,那么当 Lk \, s=\varnothing 时有 k=n ,即 H_{n}(X,X- \widehat{s}) 是无限循环群,其他情况为零;当 Lk \, s \neq \varnothing 时它具有n-k-1维球面的同调,其中 n-k-1 \geq 0 ,即 H_{n-k-1}(X,X- \widehat{s}) 是无限循环群,其他情况下为零

(6)对偶块的性质:若X是一个局部有限的复形,由至多n维的单形和它们的面组成,设 \sigma 是X的一个k维单形,那么X的各个单形的对偶块是互不相交的并且它们的并是 \left | X \right | ;\overline{D}(\sigma) 是sdX的一个 n-k 维子复形的可剖空间,\overline{D}(\sigma)-D(\sigma) 是所有以 \sigma 为一个真面的单形 \tau 的对偶块 D(\tau) 之并,并且这些块的维数低于 n-k ;\overline{D}(\sigma) 等于锥 \left | \widehat{\sigma} \ast (\overline{D}(\sigma)-D(\sigma)) \right | ;另外,如果在 i=n 时有 H_{i}(X,X-\widehat{\sigma}) \cong Z ,在其他情况下为零,那么 (\overline{D}(\sigma), \overline{D}(\sigma) - D(\sigma)) 具有 n-k 维胞腔模其边缘的同调

(7)Poincare对偶定理:设X是一个任意的n维闭流形(即紧致无边的流形),或者更一般的可剖分的n维紧致同调流形,如果X是可定向的,那么对所有的p和任意系数群或环G,都有同构 H^{p}(X;G) \cong H_{n-p}(X;G) ;如果X是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构 H^{p}(X;Z/2) \cong H_{n-p}(X;Z/2) ;

非紧致流形的Poincre对偶定理:需要把上同调换成具有紧支集的上同调。设X是一个任意的n维流形,或者更一般的可剖分的n维同调流形,如果X是可定向的,那么对所有的p和任意系数群或环G,都有同构 H_{c}^{p}(X;G) \cong H_{n-p}(X;G) ,H^{p}(X;G) \cong H_{n-p}^{\infty}(X;G) ;如果X是不可定向的,那么那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构 H_{c}^{p}(X;Z/2) \cong H_{n-p}(X;Z/2) ,H^{p}(X;Z/2) \cong H_{n-p}^{\infty}(X;Z/2) ,其中 H_{c}^{p} 表示具有紧支集的上同调,H_{n-p}^{\infty} 表示基于无穷链的下同调。

庞加莱对偶定理是流形的同调及上同调的结构的基本定理

(8)Poincare对偶的推论:

如果X是一个可剖分的、连通的n维紧致同调流形,那么当X可定向时,H_{n-1}(X) 没有挠子群,并且对任意的G都有 H_{n}(X;G) \cong G \cong H^{n}(X;G) ,特别地 H_{n}(X) \cong Z ;当X不可定向时,H_{n-1}(X) 的挠子群是2阶的,并且对任意的G都有 H_{n}(X;G) \cong ker(G \overset{2}{\rightarrow} G) ,H^{n}(X;G) \cong G/2G ,特别地有 H_{n}(X)=0 ,H^{n}(X) \cong Z/2 ;

如果X是一个可剖分的n维紧致同调流形,那么X是可定向的当且仅当对X的每一个分支 X_{i} 都有 H_{n}(X_{i}) \cong Z ,这说明X的可定向性不依赖于X的具体三角剖分

(9)卡积的性质:

边缘公式:\partial(x^{p} \cap y_{p+q})=(-1)^{q}(\delta x^{p} \cap y_{p+q})+x^{p} \cap \partial y_{p+q} ;

与上积的关系:(x^{p} \cup y^{q}) \cap z_{p+q+r}=x^{p} \cap (x^{q} \cap z_{p+q+r}) ;

卡积是双线性的,并且在拓扑空间的连续映射下是自然的

(10)Poincare对偶定理(第二种形式):设X是一个任意的n维闭流形(即紧致无边的流形),或者更一般的可剖分的n维紧致同调流形,如果X是可定向的,并且 \Gamma \in H_{n}(X) 是X的一个定向类 ,那么对所有的p和任意系数群或环G,都有同构 \cap \Gamma :H^{p}(X;G) \cong H_{n-p}(X;G) ;如果X是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构 \cap \Gamma_{(2)} :H^{p}(X;Z/2) \cong H_{n-p}(X;Z/2) 

(11)流形定向的性质:

如果流形M可定向,则M的任一开集也是可定向的;

M可定向当且仅当M的每一分支都可定向;

如果M,N是两个同胚的流形,则M可定向当且仅当N可定向;

设 S_{1},S_{2} 是连通流形M的两个定向,如果有 x \in M 满足 S_{1}(x)=S_{2}(x) ,则 S_{1}=S_{2} ,即对任意 y \in M ,都有 S_{1}(y)=S_{2}(y) ,由此可知,流形的定向由它在一点处的定向决定;

如果连通的流形有定向,则它上面可以有两个不同的定向;

对不可定向的流形M,存在可定向的二重覆叠空间 \widetilde{M} ,如果M是连通的,则 \widetilde{M} 也是连通的;

单连通的流形总是可定向的;

设S是n维流形M的一个定向,K是M中的一个紧致集,则 q>n 时有 H_{q}(M,M-K)=0 ,并且存在唯一的同调类 a \in H_{n}(M,M-K) ,使得对任意 x \in K 都有 j_{x}^{K}(a)=S(x) ,其中 j_{x}^{K}: H_{n}(M,M-K) \to H_{n}(M,M-x) 是由包含映射决定的同态。同调类 a 称为M在K上定向类;

如果紧致无边的n维流形M是可定向的,则存在同调类 a \in H_{n}(M) ,使得 S(x)=j_{x}(a) 给出M的一个定向,这里 j_{x}:H_{n}(M) \to H_{n}(M,M-x) 是同态,这样的同调类 a 称为M的一个定向类;

如果紧致无边的n维流形M的同调群 H_{n}(M)=0 ,则M是不可定向的;

设M是紧致可定向的n维流形,H_{p}(M) 的秩,即第p个Betti数记作 \beta_{p} ,则 \beta_{p}=\beta_{n-p} ;

如果M是奇数维的紧致可定向流形,则它的Euler示性数为0,即 \chi(M)=0 

(12)曲面和空间的可定向性:

穿孔球面 S^{n}-v 和与之同胚的欧氏空间 E^{n} ,都是可定向的;

Klein瓶是不可定向的曲面,其定向二重覆叠空间为环面 T=S^{1} \times S^{1} ;

Mobius带是不可定向的曲面;

奇数维实射影空间 RP^{2n+1} 是可定向的,偶数维实射影空间 RP^{2n} 是不可定向的,它的定向二重覆叠空间是同维数的球面;

所有复流形都是可定向的,因此复射影响空间 CP^{n} 是可定向的;

n重射影平面 nP^{2} 是不可定向的曲面;

n重环面 nT^{2} 是可定向的曲面;

如果用整数模2的群Z/2做为同调群的系数,则任何n维流形都是Z/2可定向的

(13)在偶数维的复射影空间 CP^{2n} 上不存在使定向相反的同伦等价

(14)设X是一个可剖分的、可定向的、连通的n维紧致同调流形,T^{k}(X) 表示 H^{k}(X) 的挠子群,那么整系数的上积运算 \cup :H^{k}(X) \times H^{n-k}(X) \to H^{n}(X) 诱导一个同态 

\frac{H^{k}(X)}{T^{k}(X)} \otimes \frac{H^{n-k}(X)}{T^{n-k}(X)} \to H^{n}(X)

它是一个对偶配对

(15)设X是一个可剖分的、连通的n维紧致同调流形,F是一个域,如果X是不可定向的则假定F等于 Z/2 。设 \Lambda 生成 H^{n}(X;F) ,那么就有向量空间 H^{k}(X;F) 的基 a_{1},...,a_{m} 和向量空间 H^{n-k}(X;F) 的基 b_{1},...,b_{m} ,使得对所有 i,j=1,...,m 都有 a_{i} \cup b_{j}=\delta_{ij} \Lambda 

(16)上同调环的计算:

环面 T=S^{1} \times S^{1} :用 H^{\ast}(T) 的生成元写出乘法表如下

Klein瓶S:H^{\ast}(S;Z/2) 的乘法表如下

二重射影平面 2P^{2}=P^{2} \sharp P^{2} :H^{1}(2P^{2};Z/2) \cong Z/2 \oplus Z/2, \, H^{1}(2P^{2};Z/2) \cong Z/2 ,而 H^{\ast}(2P^{2};Z/2) 的乘法表如下

球面的积空间:设 a^{n} \in H^{n}(S^{n}), b^{m} \in H^{m}(S^{m}) 是生成元,则 H^{\ast}(S^{n} \times S^{m}) 是秩为4的自由Abel群,以元素 1 \times 1, a \times 1, 1 \times b, a \times b 为基,正维数元素的唯一非平凡积是 (a \times 1) \cup (1 \times b)=a \times b ;

射影平面的积空间:设 a \in H^{1}(P^{2};Z/2) 是非零元,则向量空间 H^{\ast}(P^{2} \times P^{2};Z/2) 是9维的,基元素为0维的 1 \times 1 ,1维的 a \times 1, 1 \times a ,2维的 a^{2} \times 1, a \times a, 1 \times a^{2} ,3维的 a^{2} \times a, a \times a^{2} ,4维的 a^{2} \times a^{2} ;

实射影空间 RP^{n} :设 u \in H^{1}(RP^{n};Z/2) 是非零元,那么 u^{k} \, (k=2,...,n) 是 H^{k}(RP^{n};Z/2) 的非零元,因而上同调环 H^{\ast}(RP^{n};Z/2) 是Z/2上一个截断多项式代数(截断是指 u^{n+1}=0 ),并且在一维时有一个生成元 u ;

无穷维实射影空间 RP^{\infty} :H^{\ast}(RP^{\infty};Z/2) 是Z/2上的一个多项式代数

(17)保持对径点的必要条件:如果连续映射 f:S^{n} \to S^{m} 是保持对径点的,则 n\leq m 

(18)Borsuk-Ulam定理:若 f: S^{n} \to R^{n} 是连续映射,则存在一点 x \in S^{n} 使得 f(x)=f(-x) ;

推论:S^{n} 不能嵌入到 R^{n} 中,R^{n} 的任何子集都不与 S^{n} 同胚;

推论:如果用 n+1 个开集来覆盖球面 S^{ n} ,那么其中一定有一个开集含有一对对径点(与博苏克-乌拉姆定理等价);

气象定理:任意时刻地球表面总有一对对径点处的温度和气压分别相等,这里假设温度和气压的变化是连续的。这是上述定理在n=2的情形

(19)火腿三明治定理:如果 A_{1},...,A_{n} 是 R^{n} 中的有界可测集,则在 R^{n} 中存在一个 n-1 维超平面平分这些集合中的每一个,即每个集合都被平分成测度相等的两个子集。特别地,对 R^{2} 中两个有界多边形区域,在 R^{2} 中必存在一条直线平分这两个区域的每一个

推广(Gromov):一个n元不超过d次的多项式由 \binom{n+d}{d} 个参数决定。因此给定 \binom{n+d}{d}-1 个可测开集,存在某个由不超过d次的多项式定义的超曲面将这些集合一一平分。

(20)透镜空间的分类:两个透镜空间同伦等价 L(p_{1},q_{1}) \simeq L(p_{2},q_{2}) 当且仅当 p_{1}=p_{2} 。两个透镜空间同胚 L(p_{1},q_{1}) \cong L(p_{2},q_{2}) 当且仅当 p_{1}=p_{2} ,并且 q_{1}\equiv \pm q_{2}(mod \, p_{1}) 或者 q_{1}q_{2} \equiv \pm 1(mod \, p_{1}) 。特别地,L(1,0)=S^{3}, \, L(0,1)=S^{2} \times S^{1}, \, L(1,q) \cong S^{3} 

(21)两个同伦等价的2维紧致流形一定是同胚的,但对3维及以上的紧致流形则不成立

(22)Lefschetz对偶定理:设 (X, A) 是一个任意的n维相对闭流形(即紧致无边的相对流形),或者更一般的可剖分的n维紧致相对同调流形,如果 (X, A) 是可定向的,那么对所有的p和任意系数群或环G,都有同构 H^{p}(X,A;G) \cong H_{n-p}(X-A;G) ;如果X是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构 H^{p}(X,A;Z/2) \cong H_{n-p}(X-A;Z/2) 

(23)Lefschetz对偶的推论:

如果 (X, A) 是一个可剖分的n维紧致相对同调流形,并且 X-A 是连通的,那么当 (X, A) 可定向时,对任意的G都有 H_{n}(X,A;G) \cong G \cong H^{n}(X,A;G) ,特别地 H_{n}(X,A) \cong Z ;当 (X, A) 不可定向时,对任意的G都有 H_{n}(X,A;G) \cong ker(G \overset{2}{\rightarrow} G) ,H^{n}(X,A;G) \cong G/2G ,特别地有 H_{n}(X,A)=0 ,H^{n}(X,A) \cong Z/2 ;

如果 (X, A) 是一个可剖分的n维紧致相对同调流形,那么 (X, A) 是可定向的当且仅当对 X-A 的每一个分支 X_{i} 都有 H_{n}(\overline{X}_{i},\overline{X}_{i} \cap A) \cong Z ,这说明X的可定向性不依赖于 (X, A) 的具体三角剖分

(24)Poincare-Lefschetz对偶定理:设M是一个可剖分的n维紧致带边流形,并且 BdM 在M中有一个积邻域,如果 (M,BdM) 是可定向的,并且 \Gamma \in H_{n}(M,BdM) 是它的一个定向类 ,那么对所有的p和任意系数群或环G,都有同构

 \cap \Gamma :H^{p}(M,BdM;G) \cong H_{n-p}(M;G) 

\cap \Gamma :H^{p}(M;G) \cong H_{n-p}(M,BdM;G)

如果 (M,BdM) 是不可定向的,那么结论对整数模2的系数群仍然成立,即对所有的p,都有同构  

 \cap \Gamma_{(2)} :H^{p}(M,BdM;Z/2) \cong H_{n-p}(M;Z/2) 

\cap \Gamma_{(2)} :H^{p}(M;Z/2) \cong H_{n-p}(M,BdM;Z/2) 

(25)设M是一个可剖分的奇数维紧致带边流形,如果 BdM 是非空的,并且在M中有一个积邻域,那么向量空间 H_{n}(BdM;Z/2) 是偶数维的;

推论:2m维的实射影空间 RP^{2m} 不是 2m+1 维可部分紧致流形的边界;

推论:偶数维复射影空间 RP^{2m} 也不构成边界

(26)设M是一个可剖分的、可定向的n维紧致带边流形,T^{k} 表示 H^{k} 的挠子群,那么整系数的上积运算 \cup :H^{k}(M,BdM) \times H^{n-k}(M) \to H^{n}(M,BdM) 诱导一个同态 

\frac{H^{k}(M,BdM)}{T^{k}(M,BdM)} \otimes \frac{H^{n-k}(M)}{T^{n-k}(M)} \to H^{n}(M,BdM)

它是一个对偶配对

(26)Alexander对偶定理:如果A是球面 S^{n} 的一个子空间,(S^{n},A) 是可剖分的空间偶,即A是 S^{n} 中的多面体,那么就存在约化上同调与约化下同调的同构 \widetilde{H}^{k}(A) \cong \widetilde{H}_{n-k-1}(S^{n}-A) ,对偶地有另一个同构 \widetilde{H}_{k}(A) \cong \widetilde{H}^{n-k-1}(S^{n}-A) ;

球体的Alexander对偶定理:如果A是球体 B^{n} 的一个子空间,\partial A = A \cap Bd \, B^{n} , (B^{n},A) 是可剖分的空间偶,那么就有同构 \widetilde{H}^{k}(A,\partial A) \cong \widetilde{H}_{n-k-1}(B^{n}-A) 

(27)广义Jordan曲线定理:如果C是 S^{n} 中任意同胚于 S^{n-1} 的子空间,那么 S^{n}-C 恰好有两个连通分支 W_{1}, W_{2} ,C是这两个分支的公共拓扑边界,即 C=\overline{W}_{1}-W_{1}=\overline{W}_{2}-W_{2} 。特别地,S^{2} 中的一条简单闭曲线C恰好将 S^{2} 分离成两个连通分支,并且C是它们的公共边界

 

Cech上同调


(1)有向集:一个有向集 A 是带有二元关系 ≤ 的集合,满足自反性,即对所有的 x∈A ,x ≤ x 成立;传递性,即 x ≤ y,y ≤ z 蕴涵着 x ≤ z ;上界性,即给定x, y,则存在 z 使得 x ≤ z,y ≤ z,元素 z 称为 x,y的上界。

例子:

全序集在关系 ≤ 下是有向集;

拓扑空间X的开覆盖在加细关系是有向集。即 \mathcal{A} 是X的一个开覆盖,开覆盖 \mathcal{B} 是 \mathcal{A} 的加细,则 \mathcal{A} \leq \mathcal{B} ,这样的关系构成有向集

(2)Abel群范畴中的有向系:设J是有向集,一个由Abel群和同态组成的有向系,是Abel群的加标族 \left \{ G_{\alpha} \right \}_{\alpha \in J} ,连同对每对指标 \alpha \leq \beta 都有定义的一族同态 f_{\alpha \beta}: G_{\alpha} \to G_{\beta} ,它满足 f_{\alpha \alpha}: G_{\alpha} \to G_{\alpha} 是恒等同态,如果 \alpha \leq \beta \leq \gamma ,那么 f_{\beta \gamma} \circ f_{\alpha \beta}=f_{\alpha \gamma} ,即下述图表交换

(3)方向极限:给定Abel群和同态的一个有向系 \left \{ G_{\alpha} \right \}_{\alpha \in J} ,如果任意两个元素 g_{\alpha} \in G_{\alpha}, g_{\beta} \in G_{\beta} 对 \alpha, \beta 的某个上界 \delta 有 f_{\alpha \delta}(g_{\alpha})=f_{\beta \delta}(g_{\beta}) ,即它们被同态映射到同一个元素,则定义等价关系 g_{\alpha} \sim g_{\beta} ,有向系的方向极限是这些等价类 \left \{ g_{\alpha} \right \} 组成的集合,记作 \underrightarrow{lim}_{a \in J}G_{\alpha} 。定义等价类的加法 \left \{ g_{\alpha} \right \} + \left \{ g_{\beta} \right \}=\left \{ f_{\alpha \delta}(g_{\alpha}) + f_{\beta \delta}(g_{\beta}) \right \} ,则方向极限是一个Abel群

(4)有向系的映射:设J,K是两个有向集,\left \{ G_{\alpha}, f_{\alpha \beta} \right \}_{\alpha \in J} 和 \left \{ H_{\gamma}, g_{\gamma \delta} \right \}_{\gamma \in K} 是两个Abel群和同态的有向系,有向系之间的映射 \Phi ,首先包括一个保持序关系的有向集映射 \phi: J \to K ,其次对每一个 \alpha \in J ,都有两个有向系之间一个群同态 \phi_{\alpha}: G_{\alpha} \to H_{\phi(\alpha)} ,并且使得下述图表交换,其中 \gamma=\phi(\alpha), \delta=\phi(\beta), \alpha \leq \beta 

这样的有向系映射 \Phi 诱导它们方向极限之间的一个同态 \underrightarrow{\Phi}: \underrightarrow{lim}_{\alpha \in J}G_{\alpha} \to \underrightarrow{lim}_{\gamma \in K}H_{\gamma} ,把它称为同态 \phi_{\alpha}: G_{\alpha} \to H_{\phi(\alpha)} 的方向极限,它把 g_{\alpha} \in G_{\alpha} 的等价类映射到 \phi_{\alpha}(g_{\alpha}) 的等价类

(5)有向集的共尾:设J是有向集,A是J的子集,如果对每个 \alpha \in J ,都存在 \delta \in A 满足 \alpha \leq \delta ,则称 A 在 J 中是共尾的

(6)q-单形:设 I 是有向索引集, \mathcal{U}=\left \{ U_{\alpha} \right \}_{\alpha \in I} 是拓扑空间X的一个开覆盖,\mathcal{F}: \Gamma(X)^{op} \to AbGrp 是X上的一个Abel群预层,\mathcal{U} 中的一个抽象q-单形记作 \sigma=\left \{ U_{0}, ..., U_{q} \right \} ,是从 \mathcal{U} 中选出的 q+1 个集合组成的有向集,使得这些集合的交集非空,这个交集称为q-单形的支撑,记作 \left | \sigma \right | ,这些选出的集合称为q-单形的顶点;

神经(单纯复形):是开覆盖 \mathcal{U} 的一个抽象单纯复形,记作 N(\mathcal{U}) ,它的顶点是 \mathcal{U} 中的元素,它的单形包括 \mathcal{U} 中的所有有限单形,即所有有限子索引集 J \subseteq I 确定的各个单形。因此 \mathcal{U} 的一个神经可以写成以下形式

N(\mathcal{U})=\left \{ U_{J} \,|\, J \subseteq I \, and \, \bigcap_{j \in J} U_{j} \neq \varnothing \right \} 

由此可知,神经 N(\mathcal{U}) 可能是单例集,即单个索引标记的所有非空的 U_{i}, i \in I ,二元组集合即两个索引标记的所有交集非空的二元组 (U_{i}, U_{j}), i,j \in I ,三元组,等等。如果有向索引集 J 属于神经 N(\mathcal{U}) ,那么它的子集也属于这个神经;

边缘算子:q-单形 \sigma=\left \( U_{0}, ..., U_{q} \right \) 的第 j 个部分边缘是移除 \sigma 的第 j 个集合所得的 (q-1)-单形,即 \partial_{j} \sigma =\left \( U_{0},...,U_{j-1},U_{j+1},...,U_{q} \right \) ,所有部分边缘的交错和,就是 \sigma 的边缘,即 \partial \sigma=\sum_{i=0}^{q}(-1)^{j+1} \partial_{j} \sigma ,它是一个(q-1)-单形链,构成一个神经,是 \mathcal{U} 的所有神经构成的自由Abel群 C_{q-1}(\mathcal{U}) 中的一个元素

(7)q-上链:设 I 是有向索引集, \mathcal{U}=\left \{ U_{\alpha} \right \}_{\alpha \in I} 是拓扑空间X的一个开覆盖,\mathcal{F}: \Gamma(X)^{op} \to AbGrp 是X上的一个Abel群预层,\mathcal{U} 的一个带 \mathcal{F} 中系数的q-上链是一个映射 f: C_{q}(\mathcal{U}) \to \mathcal{F}(\left | \sigma \right |) ,它把每个q-单形 \sigma=\left \{ U_{0}, ..., U_{q} \right \} 映射到Abel群 \mathcal{F}(\left | \sigma \right |) 中的一个元素;

q-上链群:把所有q-上链构成的集合记作 C^{q}(\mathcal{U}; \mathcal{F}) ,称为q维上链群,按上链的加法它构成一个Abel群;

上边缘算子(微分算子):\delta_{q}: C^{q}(\mathcal{U};\mathcal{F}) \to C^{q+1}(\mathcal{U};\mathcal{F}) ,定义为把每个q-上链 f: C_{q}(\mathcal{U}) \to \mathcal{F}(\left | \sigma \right |) 映射为(q+1)-上链,即对任意q-单形 \sigma=\left \{ U_{0}, ..., U_{q} \right \} 都有

 (\delta_{q}f)(\sigma)=\sum_{j=0}^{q+1}(-1)^{j} res_{\left | \sigma \right |}^{\left | \partial_{j} \sigma \right |} f(\partial_{j} \sigma)

其中 res_{\left | \sigma \right |}^{\left | \partial_{j} \sigma \right |} 是从 \mathcal{F}(\left | \partial_{j} \sigma \right |) 到 \mathcal{F}(\left | \sigma \right |) 的限制映射。类似地有性质 \delta_{q+1} \circ \delta_{q}=0 。上边缘算子类似于de Rham上同调中的外微分算子(外导数),因此有时也称上链复形的微分算子;

Cech上链复形:由上链群和上边缘算子构成的上链复形,记作 \mathcal{C}=\left \{ C^{q}(\mathcal{U};\mathcal{F}), \delta_{q} \right \} 

(8)q-上闭链:一个 q-上链 f: C_{q}(\mathcal{U}) \to \mathcal{F}(\left | \sigma \right |) 是上闭链,如果对所有的q-单形 \sigma 满足闭链条件

(\delta_{q}f)(\sigma)=\sum_{j=0}^{q+1}(-1)^{j} res_{\left | \sigma \right |}^{\left | \partial_{j} \sigma \right |} f(\partial_{j} \sigma)=0 

q-上闭链是上边缘算子的核中的元素。例如,一个 0-上闭链 f 是 \mathcal{F} 的局部截面的集合,这些截面在每个相交处满足兼容性关系,即对每个相交的集合 A,B \in \mathcal{U} 都有 f(A)|_{A \cap B}=f(B)|_{A \cap B} 。一个 1-上闭链 f 满足对每个具有非空交集 U=A \cap B \cap C 的集合 A,B,C \in \mathcal{U} ,都有 f(B \cap C)|_{U} - f(A \cap C)|_{U} + f(A \cap B)|_{U}=0 ;

q-上闭链群: Z^{q}(\mathcal{U};\mathcal{F})=ker(\delta_{q}) \subseteq C^{q}(\mathcal{U};\mathcal{F}) ,它是上链群的Abel子群;

q-上边缘链:一个 q-上链 f: C_{q}(\mathcal{U}) \to \mathcal{F}(\left | \sigma \right |) 是上边缘链,如果它是某个(q-1)-上链在上边缘算子 \delta_{q-1} 作用下的像。q-上边缘链是上边缘算子的像中的元素。例如,一个 1-上链 f 是上边缘链,如果存在某个0-上链 h ,使得对每个相交的集合 A,B \in \mathcal{U} 都有 f(A \cap B)=h(A)|_{A \cap B}-h(B)|_{A \cap B} ;

q-上边缘链群: B^{q}(\mathcal{U};\mathcal{F})=im(\delta_{q-1}) \subseteq C^{q}(\mathcal{U};\mathcal{F}) ,它是上闭链群的Abel子群

(9)开覆盖的Cech上同调群:设 I 是有向索引集, \mathcal{U}=\left \{ U_{\alpha} \right \}_{\alpha \in I} 是拓扑空间X的一个开覆盖,\mathcal{F}: \Gamma(X)^{op} \to AbGrp 是X上的一个Abel群预层,则 \mathcal{U} 的q维Cech上同调群定义为Cech上链复形 \mathcal{C}=\left \{ C^{q}(\mathcal{U};\mathcal{F}), \delta_{q} \right \} 的上同调群

\check{H}^{q}(\mathcal{U}; \mathcal{F})=Z^{q}(\mathcal{U}; \mathcal{F})/B^{q}(\mathcal{U}; \mathcal{F})

(10)单纯映射:对拓扑空间X,若开覆盖 \mathcal{B} 是 \mathcal{A} 的加细,定义顶点映射 g: \mathcal{B} \to \mathcal{A} 为,g(B) 是 \mathcal{A} 的一个包含B的元素,如果 \sigma=\left \{ B_{0},...,B_{n} \right \} 是 N(\mathcal{B}) 的一个单形,那么 g(\sigma)=\left \{ g(B_{0}),...,g(B_{n}) \right \} 就是 N(\mathcal{A}) 的一个单形。这样它诱导一个单纯映射 g: N(\mathcal{B}) \to N(\mathcal{A}) ,称为加细开覆盖之间的单纯映射;

加细诱导的同态:加细开覆盖的单纯映射 g: N(\mathcal{B}) \to N(\mathcal{A}) ,确定唯一的两个带G系数的同态 g_{\ast}: H_{k}(\mathcal{B};G) \to H_{k}(\mathcal{A};G) ,g^{\ast}: H^{k}(\mathcal{A};G) \to H^{k}(\mathcal{B};G) ,它们是由对所有 B \in \mathcal{B} 满足条件 g(B) \supset B 的单纯映射 g 诱导的,称为由加细诱导的同态

(11)拓扑空间的Cech上同调群:设拓扑空间X的开覆盖在加细关系下构成的有向集为 J , X上的一个Abel群预层为 \mathcal{F}: \Gamma(X)^{op} \to AbGrp ,用下述方法构造上同调群的有向系,对 J 中的元素 \mathcal{A} 指派上同调群 \check{H}^{k}(\mathcal{A};\mathcal{F}) ,对序偶 \mathcal{A} \leq \mathcal{B} 指派由加细诱导的同态 f_{\mathcal{A} \mathcal{B}}: \check{H}^{k}(\mathcal{A};\mathcal{F}) \to \check{H}^{k}(\mathcal{B};\mathcal{F}) ,这个有向系的方向极限就是X的带 \mathcal{F} 中系数的k维Cech上同调群

\check{H}^{k}(X;\mathcal{F})=\underrightarrow{lim}_{\mathcal{A} \in J} \check{H}^{k}(\mathcal{A}; \mathcal{F}) 

类似地把X的约化Cech上同调群定义为约化上同调群 \check{\widetilde{H}}^{k}(\mathcal{A}; \mathcal{F}) 的方向极限。注意若 \mathcal{F} 是一个由Abel群G确定的常值层 \mathcal{F}_{G} ,则Cech上同调群记作 \check{H}^{k}(X;G) 。

Cech上同调群只依赖于X的开覆盖族,所有它们是X的拓扑不变量

 

主要定理:

(1)如果 \left \{ G_{\alpha}, f_{\alpha \beta} \right \}_{\alpha, \beta \in J} 是一个Abel群和同态的有向系,A在J中是共尾的,那么A是一个有向集,并且包含映射诱导方向极限的同构 \underrightarrow{lim}_{\alpha \in A}G_{\alpha} \cong \underrightarrow{lim}_{\alpha \in J}G_{\alpha} 

(2)Cech上同调的连续性:若Y是正规空间X的一个紧致子空间,Y的覆盖 \mathcal{A} 在加细关系下构成的有向集为 L,这些覆盖中的集合在X中(而不是在Y中)是开的,那么 \check{H}^{k}(Y;G) \cong \underrightarrow{lim}_{\mathcal{A} \in L} \check{H}^{k}(\mathcal{A}; G) 。一般地,若X是一个可剖分的紧致空间,D_{1} \supset D_{2} \supset ... 是X中的多面体序列,其交是Y,那么 \check{H}^{k}(Y;G) \cong \underrightarrow{lim} \check{H}^{k}(D_{n}; G) ,同样的结果对约化上同调也成立

(3)Cech上同调与其他上同调的关系:

如果拓扑空间X同伦等价于一个单纯复形,则Cech上同调 \check{H}^{k}(X;G) 自然同构于单纯上同调 H^{k}(X;G) ;

如果X同伦等价于一个CW复形,则Cech上同调 \check{H}^{k}(X;G) 自然同构于奇异上同调 H^{k}(X;G) ;

如果X是一个微分流形,则则Cech上同调 \check{H}^{k}(X;R) 自然同构于de Rham上同调 H^{k}_{DR}(X) ;

如果X是一个微分流形,它的开覆盖 \mathcal{U}=\left \{ U_{\alpha} \right \}_{\alpha \in I} 是一个良好的覆盖,即所有的集合 U_{\alpha} 都可以收缩成一点,所有 \mathcal{U} 中集合的有限交是空集或者可以收缩成一点,则Cech上同调 \check{H}^{k}(\mathcal{U};R) 自然同构于de Rham上同调 H^{k}_{DR}(X) ;

对于行为欠佳的空间,Cech上同调不同于奇异上同调。例如若X是拓扑学家的封闭正弦曲线 T=\left \{ (x, sin \frac{1}{x}) \,|\, x \in (0,1) \right \} \cup \left \{ (0,y) \,|\, y \in [-1,1] \right \} ,则 \check{H}^{1}(X;Z) \cong Z ,而 H^{1}(X;Z) =0 

(4)Alexander-Pontryagin对偶定理:如果A是球面 S^{n} 的闭的非空真子集,那么就存在约化Cech上同调与约化奇异下同调的同构 \check{\widetilde{H}}^{k}(A) \cong \widetilde{H}_{n-k-1}(S^{n}-A) 

(5)广义Jordan曲线定理:如果M是一个可剖分的 n-1 维连通紧致流形,并且可以嵌入到 S^{n} 中,即存在嵌入 h: M \to S^{n} ,那么M是可定向的,并且 S^{n}-h(M) 恰好有两个道路连通分支 W_{1}, W_{2} ,h(M) 是这两个分支的公共拓扑边界,即 h(M)=\overline{W}_{1}-W_{1}=\overline{W}_{2}-W_{2}  

 

 

参考书籍:

(1)代数拓扑基础:James R.Munkres

 

代数拓扑基础讲义 出版时间:2014年版 丛编项: 高等学校教材 内容简介   《代数拓扑基础讲义/高等学校教材》是参照1980年5月在上海举行的高等学校理科数学、力学、天文学教材编审委员会扩大会议上讨论并审订的《代数拓扑学教学大纲》编写的,并在教学中经几次试用修改而成。全书内容包括:必要的点集拓扑知识,映射的同伦和基本群,单纯复形及其单纯同调群,拓扑空间的奇异同调群,同调群的一些应用,最后有一个关于集合、群和交换群、线性欧氏空间的附录。内容基本上是自包含的。《代数拓扑基础讲义/高等学校教材》可供综合大学和高等师范数学系作为教学用书,也可供需要代数拓扑学知识的科技人员、教师参考。《代数拓扑基础讲义/高等学校教材》于1987年出版,恰逢高等教育出版社建社60周年,甲午重印,以飨读者。 目录 绪论 第一章 拓扑空间 1 拓扑空间 2 关于子集的基本概念 3 连续映射与同胚 4 紧致性 5 连通性 6 乘积空间 7 粘合空间 第二章 基本群 1 映射的同伦与空间的同伦型 2 基本群的定义 3 基本群的计算实例 4 基本群的应用 第三章 多面体及其单纯同调群 1 欧氏空间中的超平面与单纯形 2 单纯复形与多面体 3 复形的单纯同调群 4 单纯同调群的计算实例 第四章 奇异同调论 1 奇异同调群的定义 2 奇异同调群的特例 3 链复形 4 奇异同调群是同伦型不变量 5 相对奇异同调群 6 正合同调序列 7 切除定理 8 切除定理的证明 第五章 多面体的同调群及其应用 1 多面体的同调群 2 Euler-Poincar6示性数 3 与球面有关的应用 附录 1 集合与函数 2 群 3 Abel群 4 线性欧氏空间 参考书目 索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值