自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 3. 非平稳信号分析与处理——不确定性原理

在现实世界中,表示某种物理量的原始信号是在无限长的时域和频域上连续的,但人们只关心且只有能力测量信号在有限时间和频率范围内的特征。显然,原信号频谱在卷积一个单位冲激响应后不会发生任何变化,频谱的还原效果最好,而主瓣宽度和副瓣幅值越大,频谱的还原效果越差。截断和采样的过程可以等价于将原信号乘上一个离散的窗函数,根据傅里叶变换的对偶性质,一个信号在一个域乘以窗函数时,就相当于在另一个域与窗函数的频谱做了卷积。因此,可以看出,对于时域的矩形窗函数,时域窗宽越大,则其频谱主瓣的宽度越小。

2024-12-24 15:01:46 1250

原创 笔记:随机过程(张颢2024)——3.非平稳过程

非平稳性:难有一般性的解决方案,只能 case by case。

2024-12-17 23:43:58 939

原创 笔记:随机过程(张颢2024)——2.随机过程概念及其分类(2)

Transformer和普通卷积网络最本质的区别普通卷积神经网络:用滤波器对图像的每一块输出结果把握每之间的关联,既是做相关。从二阶的角度分析,比一阶更本质。从上节课可知,相关函数使信号分析从整体简化到局部,即局部的相关特征可也用来表示整体。

2024-12-16 23:32:09 912

原创 笔记:随机过程(张颢2024)——1.随机过程概念及其分类

样本空间到实数轴的函数分布函数,概率密度函数,k阶矩。

2024-12-13 17:38:06 1189 1

原创 2. 非平稳信号分析与处理——解析信号与基带信号

实际应用中,直接接收或观测到的总是实信号的波形,而求解其解析信号需要构造具有理想阶跃频率特性的滤波器,这一滤波器在现实中是无法实现的。而在非平稳信号分析中,我们往往对时变的量更感兴趣,故可以对。的速度旋转,两向量的和向量沿实轴对称,故和向量必定落在实轴上。如图1所示,先将实信号乘以。得到,从而可以分别得到基带信号的实部和虚部,如图2所示。在时域上,频移和低通滤波器也是相对容易实现的,乘以。的另一个优势是易于获取,根据欧拉公式,我们可以将。,得到的信号频谱在零频附近,设其为。对于一般的窄带高频信号模型,

2024-09-29 21:40:50 630

原创 1.非平稳信号分析与处理——希尔伯特(Hilbert)变换

在实际应用中,我们往往获得的是信号波形或采样后的序列,无法直接获得信号的数学表达式。需要对信号波形做傅里叶变换,通过幅频曲线和相频曲线读取组成该信号的信号频率。的波形,还需要分析这两者的联系,我们期望获得的是一种不需要先验参数的处理方式,可以直接将。,将无限长的时间函数或序列简化为仅包含3个参数的数学表达式。时刻发散,一般采用函数表达式的形式而非卷积的形式定义,写作。为常数时,以复指数项中指数的正负区分频谱的正负部分。的信号,对其做傅里叶变换也无法获得完整的。,时域信号的乘积对应各自频谱的卷积,则有。

2024-09-28 23:33:46 2324

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除