笔记:随机过程(张颢2024)——1.随机过程概念及其分类

1.1. 综述

随机变量

样本空间到实数轴的函数X: \Omega \rightarrow \mathbb{R}

分布函数F_X(x),概率密度函数f_X(x),k阶矩E(X^k)

随机过程 

多个随机变量的关系

(1). 线性相关

        时域

        频域

        Gaussian过程

(2). 马尔可夫性

        1). 离散时间

        2). 连续时间

        3). Poisson过程

(3). 鞅(Martingale)

金融领域


1.2. 线性相关

相关性:二元的

矩形,Y的分布不随X改变而改变,独立

圆形,范围改变期望不变,不独立但不是线性相关

纺锤形,期望改变且范围改变,线性相关,Y的取值范围随X增大而增大,若纺锤宽度为0,则为线性关系。 

符号说明

Y~kX,Y的期望与X成线性的关系,引入距离度量,均方距离(E|X-Y|^2)^{1/2},将Y与kX带入:

E(|Y-kX|^2)=E|Y|^2+k^2E|X|^2-2kE|XY| 

其中的交叉项E(XY)就是X和Y的相关

相关有两个特点:

        (1). 相关是一种内积,具有:正定性、对称性、双线性;

        (2). 视为几何中的角度,从而理解正交。

由此,可得相关的性质。

1.3  相关的性质

1.3.1 与独立的关系

独立与不相关(正交,E(XY)=EX EY,若X,Y均值为0,则E(XY)=0)的关系为

 独立一定不相关,不相关不一定独立

1.3.2 柯西不等式

|E(XY)| \leqslant (E(X^2)E(Y^2))^{1/2}

|R_{XY}| \leqslant (R_{XX}R_{YY})^{1/2}

1.3.3 自相关矩阵

X=(x_1,x_2,\dots, x_n)^TE(XX^T)=R_X即为自相关矩阵。

自相关矩阵对称且正定。

对称性证明

R_X(i,j)=E(x_i x_j)=E(x_j,x_i)=R_X(j,i)

正定性的证明

\forall z \in \mathbb{R}, z^T R_z z=z^T E(z z^T)z=E(z^T z z^T z)=E(z^T z)^2

而且z^T z为一个数(z中所有元素的平方和),故z^T R_z z \geqslant 0R_z正定。

1.4 随机函数

若对定义域内的一个自变量t_0,均有一个随机变量X(t_0)=\omega_0与之对应(一般的函数对应的是一个确定的值),则表示该随机过程的函数X(t)(也可写作X(\omega,t))被称为随机函数。大多数情况下,随机过程和随机函数等价。随机函数的一组值被称为样本轨道,例如股票曲线,一天确定的值就是一组样本轨道,而当天的曲线有无数种可能。

对一个随机函数,在不同时刻取值的乘积的期望R_X(t,s)=E(X(t)X(s)),被称为(自)相关函数。

相关函数即是连续随机变量的相关矩阵,同样具有对称性和正定性,且满足柯西不等式。即

R_X(t,s)=R_X(s,t)

 R_X(t,t) \geqslant 0

|R_{X}(t,s)| \leqslant (R_{X}(t,t)R_{X}(s,s))^{1/2}

证明略。

1.5 随机过程的平稳性质

宽平稳(w.w.s.)性质:

① E(X(t))\equiv m(t),其中,为m(t)确定函数或常数

R_X(t+T,s+T)=R_X(t,s),\ \forall T,也可以写作R_X(t-s)=R_X( \tau )

由以上两个特性可以判断随机过程是否满足宽平稳,并得出以下推论

|R_X( \tau )| \leqslant R_X(0)

④如果X(t)宽平稳,且R_X(0)=R_X(T),则R_X(T+\tau)=R_X(\tau),\ \forall \tau

⑤如果R_X(\tau)\tau =0连续,则R_X(\tau)处处连续。


1.10 补充知识:

1.10.1 重要分布:

离散:伯努利、二项、Poisson分布

连续:均匀、指数、Gaussian

1.10.2 柯西不等式证明(内积)

内积形式的柯西不等式为

|\left \langle x,y \right \rangle | \leqslant (\left \langle x,x \right \rangle ,\left \langle y,y \right \rangle )^{1/2}

证明:构造辅助函数

0\leqslant g(\alpha)=\left \langle \alpha x+y,\alpha x+y\right \rangle

有非负性,且其展开为

g(\alpha)=\alpha ^2 \left \langle x,x \right \rangle + 2 \alpha \left \langle x,y \right \rangle + \left \langle y,y \right \rangle

\alpha是开口向上的函数,其\Delta判别式为

\Delta(\alpha) = 4 (\left \langle x,y \right \rangle)^2 - 4(\left \langle x,x \right \rangle\left \langle y,y \right \rangle)

由于g(\alpha)开口向上且非负,g(\alpha)=0无解或只有一个解,故

\Delta(\alpha) = 4 (\left \langle x,y \right \rangle)^2 - 4(\left \langle x,x \right \rangle\left \langle y,y \right \rangle) \leqslant 0

(\left \langle x,y \right \rangle)^2 \leqslant (\left \langle x,x \right \rangle\left \langle y,y \right \rangle)

两边开方

|\left \langle x,y \right \rangle | \leqslant (\left \langle x,x \right \rangle ,\left \langle y,y \right \rangle )^{1/2}

得证!

1.10.3 相关函数性质④证明

性质④:如果X(t)宽平稳,且R_X(0)=R_X(T),则R_X(T+\tau)=R_X(\tau),\ \forall \tau

证明: 若要证明R_X(T+\tau)=R_X(\tau),\ \forall \tau,考虑先证明E|X(t)-X(t+T)|^2=0

R_X(0)=R_X(T),可知\forall t,\ E(X(t)X(t))=E(X(t)X(t+T)),左边还等于

R_X(0)=E(X^2(t))=E(X^2(t+T))

即有

\begin{aligned} E|X(t)-X(t+T)|^2 &=E(X^2(t))+E(X^2(t+T))-2E(X(t)X(t+T)) \\ &=2R_X(0)-2R_X(T) \\ &=0 \end{aligned}

又因为R_X(T+\tau)=R_X(\tau)\Leftrightarrow |E(X(0)X(\tau))-E(X(0)X(\tau+T))|

期望具有线性性质,有

\begin{aligned} |E(X(0)X(\tau))-E(X(0)X(\tau+T))|&=|E(X(0)X(\tau)-X(0)X(\tau+T))| \\ &=|E(X(0)(X(\tau)-X(\tau+T)))| \end{aligned}

由于乘积的绝对值小于等于绝对值的乘积,

\begin{aligned} |E(X(0)(X(\tau)-X(\tau+T)))| &\leqslant E(|X(0)| |X(\tau)-X(\tau+T)|) \\ &\leqslant E(X^2(0))(E|X(\tau)-X(\tau+T)|^2)^{1/2} \\ &=0 \end{aligned}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值