目录
1.1 待解决的问题
对一个理想的单频正(余)弦信号,假设其模型为
在实际应用中,我们往往获得的是信号波形或采样后的序列,无法直接获得信号的数学表达式。需要对信号波形做傅里叶变换,通过幅频曲线和相频曲线读取组成该信号的信号频率、幅值
和相位
,将无限长的时间函数或序列简化为仅包含3个参数的数学表达式。
傅里叶变换解决问题的思路是:当采集到的信号波形满足的形式时,通过傅里叶变换获得常参数
、
和
。
而对更一般化的常规信号,信号的幅值和相位
往往都不是固定值,会变成如下模型
其中,代表信号的幅值随时间变化而变化,频率
为固定值,
中除
以外的时变量
表示信号时变的相位偏移,在一些文献中,将
也视为
的一部分,即
,
被称为瞬时相位,在本案例中瞬时相位为
。
对于形如的信号,对其做傅里叶变换也无法获得完整的
和
函数,这是因为傅里叶变换是一种全域变换,其积分公式为对
在
上进行积分,积分后的函数中不再包含时间分量。
结合傅里叶变换的解决思路,问题可以整理为:
已知采集到的信号满足的形式,如何获得准确的
和
。
1.2 解决思路
需要注意的是,并非不能进行傅里叶变换,而是其傅里叶变换是
和
两个分量各自傅里叶变换的卷积,难以还原出两个分量。接下来的解决思路就是通过改变
的频域模型使得两个分量更容易区分。
考虑欧拉公式,将
重写为
由于是实信号,频谱具有共轭对称性,单边频谱就拥有
的全部信息,定义一个仅有正频率的复信号
由的表达式可知,对它取模值
即为
,对其取相位值
即为
,可以很容易地获得
和
,
实际上就是信号
的解析信号。
1.3 实现方式
现在我们知道,复信号的分析难度要低于
,但我们实际只有
的波形,而要获得
的波形,还需要分析这两者的联系,我们期望获得的是一种不需要先验参数的处理方式,可以直接将
处理为
。
首先,从和
的时域表达式看,
的实部即为
,设虚部为
,则有
则问题进一步精确为:找到一种处理方式,使实信号转变成
,其中
和
均为实信号。
将写为欧拉展开的形式,并对比
很容易判断,当和
均为常数,且
时,
在频谱上是一个在正半轴
处的冲激函数,而
是一个在负半轴
处的冲激函数。
此时,与
的频谱
和
有以下关系
进一步可写为
其中
在时域上,设的单位冲激响应为
,有
其中,
求的步骤被称为希尔伯特变换(Hilbert transform),由于
在
时刻发散,一般采用函数表达式的形式而非卷积的形式定义,写作
式中的和
均为实变量
表示积分的柯西主值,消除其中的无穷大项。
故希尔伯特变换就是我们求解的方法,然而,这一结论是限制在
和
均为常数的情况下成立的,我们需要考虑如何将这一限制去除或削弱。
1.4 限制条件分析
观察的数学表达式
设,则
,时域信号的乘积对应各自频谱的卷积,则有
,
、
分别为
、
的频谱。
在1.1.3中,与
建了
的关系,且在
为常数时,以复指数项中指数的正负区分频谱的正负部分。则能使
成立的条件即是
、
的卷积不影响
在频域上的正负区间。对实信号
、
,则要满足
的下限频率大于
的上限频率,即
。
1.5 希尔伯特变换的本质
不失一般性,我们总可以假设组成的
、
在频谱上至多有1个频点重合,即
、
,其中
,则有
也就是说,希尔伯特变换的本质是将组成一个信号中的频率最高的部分的余弦波转化成正弦波。