- 原文链接(转载请注明出处):决策模型(二):风险决策法

前言
风险决策法是指决策者对客观情况不了解,但是对将发生各事件的概率是已知的。决策者往往通过调查,根据过去的经验或主观估计等途径获得这些概率。在风险决策中一般采用期望值作为决策准则,常用的有最大期望收益决策准则(EMV)和最小机会损失决策准则(EOL)。
风险型决策问题一般具有以下特点:
- 决策具有明确目标: 获得最大收益(利润)或最小损失;
- 存在两个以上可供选择的行动方案
- 存在两个或两个以上不以决策者主观意志为转移的自然状态,但决策者根据过去的经验,主观估计或科学理论等可预先估算出这些状态出现的概率值;
- 各行动方案在确定状态下的损益值可以计算出来;
下面接着上一篇博文,对文中的例子做风险决策分析,决策矩阵如下:
(策略\事件) | E1 = 0 | E2 = 10 | E3 = 20 | E4 = 30 | E5 = 40 |
---|---|---|---|---|---|
事件概率(pj) | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 |
S1 = 0 | 0 | 0 | 0 | 0 | 0 |
S2 = 10 | -10 | 50 | 50 | 50 | 50 |
S3 = 20 | -20 | 40 | 100 | 100 | 100 |
S4 = 30 | -30 | 30 | 90 | 150 | 150 |
S5 = 40 | -40 | 20 | 80 | 140 | 200 |
(注:记各自然状态发生的概率为\(p_j\),采用第 i 种方案在发生第 j 自然状态下的损益值为 \(a_{ij}\))
最大期望收益决策准则(EMV)
定义
最大期望收益决策,显而易见,就是计算出每个方案期望收益值,然后选取最大期望值对应的方案即为最优方案。
计算步骤
先根据各事件发生的概率 \(p_j\),求出各个策略的期望收益值。然后从这些期望收益值中选择最大者,它对应的策略为决策应选策略。
计算公式
S*k\(\rightarrow\) max \(\sum_{j} p_ja_{ij}\)
计算结果
(策略\事件) | E1 = 0 | E2 = 10 | E3 = 20 | E4 = 30 | E5 = 40 | EMV |
---|---|---|---|---|---|---|
事件概率(pj) | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 | |
S1 = 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S2 = 10 | -10 | 50 | 50 | 50 | 50 | 44 |
S3 = 20 | -20 | 40 | 100 | 100 | 100 | 76 |
S4 = 30 | -30 | 30 | 90 | 150 | 150 | 84 \(\longleftarrow\) max |
S5 = 40 | -40 | 20 | 80 | 140 | 200 | 80 |
根据 EMV 决策准则有
max (0 , 44 , 76, 84, 80) = 84
对应的决策策略为 S4&#x