数字图像处理与机器视觉:原理、挑战与资源
1. 机器视觉系统与人类视觉系统的对比
机器视觉系统(MVS)在处理视觉场景分析问题时,知识库起着重要作用。例如,在模式分类阶段,若知道第一个字符必须是数字,就能帮助区分 “0” 和 “O”。同时,知识库理论上应有助于 MVS 内的所有任务,像分割模块可借助车牌的形状、长宽比、在原始图像中最可能出现的位置、字符数量、字符大小和位置信息以及可能出现在车牌区域的相关背景图案等规则。
人类视觉系统(HVS)和机器视觉系统各有优劣,MVS 设计者必须了解这些差异。以下是机器视觉系统难以模仿人类视觉系统性能的三大挑战:
1. 庞大的图像数据库和概念 :HVS 依赖一生积累的大量图像和相关概念数据库。虽然存储图像本身成本不再高昂,但 MVS 要将这些图像映射到高级语义概念并置于具体情境中是一项艰巨任务,目前尚无解决方案。
2. 高速决策能力 :HVS 能基于视觉输入快速做出决策。尽管一些图像处理和机器视觉任务可通过专用硬件或超级计算机提高处理速度,但许多实用算法的实现仍无法达到人类的处理速度,难以满足实时系统的需求。
3. 广泛的工作条件适应性 :HVS 能在从光线不足到观察 3D 对象视角不理想等各种条件下正常工作,这是机器视觉系统设计中公认的最大障碍。为克服这一限制,大多数 MVS 需对场景的操作条件施加诸多限制,如精确控制照明、去除可能误导系统的无关干扰物以及精心放置物体以减少阴影和遮挡问题。
2. 学习资源推荐
2.1 书籍
以下是图像处理及相关领域的部
超级会员免费看
订阅专栏 解锁全文
17万+

被折叠的 条评论
为什么被折叠?



