LeetCode53——Maximum Subarray

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.


两种方法,一种是O(n)完事,另一种在算法导论看过,就是二分法。

第一种方法

比较每一个数字与累加的sum比较,当前数字比sum大就从当前数字重新累加,当然还用一个max存储最大的子数组和。

public int maxSubArray(int[] nums) {
        if (nums == null) {
            return 0;
        }
        if (nums.length == 1){
            return nums[0];
        }
        int max = nums[nums.length-1];
        for (int i = nums.length-2; i >= 0; i--) {
            nums[i] = Math.max(nums[i],nums[i]+nums[i+1]);
            max = Math.max(nums[i],max);
        }
        return max;
    }

第二种方法

Divide and conquer 方法:

    对于任何一个array来说,有三种可能:
      1。它的maximum subarray 落在它的左边;
      2。maximum subarray 落在它的右边;
      3。maximum subarray 落在它的中间。
对于第一,二种情况,利用二分法就很容易得到,base case 是如果只有一个数字了,那么就返回。
    对于第三种情况,如果落在中间,那么我们要从左右两边返回的两个 mss 中,挑出一个大的,再从 (左右中大的值) 和 (左+右)中挑出一个大的。具体看下面代码。

public class Solution 
{
    public int maxSubArray(int[] nums) 
    {
        // Solution 3: Divide and Conquer. O(nlogn)
        if(nums == null || nums.length == 0)
            return 0;
        
        
        return Max_Subarray_Sum(nums, 0, nums.length-1);
    }
    
    public int Max_Subarray_Sum(int[] nums, int left, int right)
    {
        if(left == right)    // base case: meaning there is only one element.
            return nums[left];
        
        int middle = (left + right) / 2;    // calculate the middle one.
        
        // recursively call Max_Subarray_Sum to go down to base case.
        int left_mss = Max_Subarray_Sum(nums, left, middle);    
        int right_mss = Max_Subarray_Sum(nums, middle+1, right);
        
        // set up leftSum, rightSum and sum.
        int leftSum = Integer.MIN_VALUE;
        int rightSum = Integer.MIN_VALUE;
        int sum = 0;
        
        // calculate the maximum subarray sum for right half part.
        for(int i=middle+1; i<= right; i++)
        {
            sum += nums[i];
            rightSum = Integer.max(rightSum, sum);
        }
        
        sum = 0;    // reset the sum to 0.
        
        // calculate the maximum subarray sum for left half part.
        for(int i=middle; i>= left; i--)
        {
            sum += nums[i];
            leftSum = Integer.max(leftSum, sum);
        }
        
        // choose the max between left and right from down level.
        int res = Integer.max(left_mss, right_mss);
        // choose the max between res and middle range.
        
        return Integer.max(res, leftSum + rightSum);
        
    }
    
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值