牛顿迭代法求高次方程的根

比二分更快的方法

如果要求一个高次方程的根,我们可以用二分法来做,这是最基础的方法了。但是有没有更好更快的方法呢?

 
我们先来考察一个方程f(x)的在点a的泰勒展开,展开到一阶就可以了(假设f(x)在点a可以泰勒展开,也就是泰勒展开的那个余项在n趋于无穷时趋于0)
f(x) -> f(a) + (x - a)f'(a)
现在我们令这个一阶展开为0,当f'(a)是非0值,移项一下就有
x = a - f(a)/f'(a)
 
实际上当我们把f(a)改成f(x) - f(a),这就是一个过了f(a)的关于f(x)的切线方程,如果我们令f(x) = 0就可以得到这条切线在x轴上的交点了。
重复这个过程,我们就可以得到逼近我们所想要的答案的解了。这就是牛顿迭代法的原理。
如上图,当我们求f[x] = x^2 - 2这个方程的根时,我们可以先猜这个解是4,然后在(4,f(4))这个点上做切线交x轴零点9/4,然后我们继续在9/4这个点做切线,继续逼近。
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牛顿是一种用于解方程实根的数值方,它基于函数的局部线性逼近来逐步逼近方程的根。下面是利用牛顿解方程组实根的Python代码示例: ```python import numpy as np def newton_method(f, J, x0, tol=1e-6, max_iter=100): """ 牛顿解方程组实根 :param f: 方程组的函数向量 :param J: 方程组的雅可比矩阵 :param x0: 初始解向量 :param tol: 代收敛的容差 :param max_iter: 最大代次数 :return: 方程组的实根向量 """ x = x0 for i in range(max_iter): delta_x = np.linalg.solve(J(x), -f(x)) x += delta_x if np.linalg.norm(delta_x) < tol: return x raise ValueError("未能收敛到解") # 示例方程组:x^2 + y^2 = 25, x^2 - y = 1 def equations(x): return np.array([x**2 + x**2 - 25, x**2 - x - 1]) # 示例方程组的雅可比矩阵 def jacobian(x): return np.array([[2*x, 2*x], [2*x, -1]]) # 初始解向量 x0 = np.array([1, 1]) # 调用牛顿解方程组实根 root = newton_method(equations, jacobian, x0) print("方程组的实根为:", root) ``` 这段代码中,`newton_method`函数是利用牛顿解方程组实根的主要函数。其中,`f`参数是方程组的函数向量,`J`参数是方程组的雅可比矩阵,`x0`参数是初始解向量,`tol`参数是代收敛的容差,`max_iter`参数是最大代次数。函数中使用了`numpy`库来进行矩阵运算。 示例中给出了一个方程组的函数向量和雅可比矩阵的定义,你可以根据实际问题进行修改。最后,通过调用`newton_method`函数,可以得到方程组的实根向量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值