雅可比矩阵

维基百科-雅可比矩阵

假设某函数从\(\mathbb{R}^n\)映射到\(\mathbb{R}^m\),则其雅可比矩阵是从\(\mathbb{R}^n\)\(\mathbb{R}^m\)的线性映射,意义在于表现一个多变量向量函数的线性逼近,因此雅可比矩阵类似单变量函数的导数。假设\(F:\mathbb{R}^n\rightarrow\mathbb{R}^m\)是从\(n\)维欧氏空间映射到\(m\)维欧氏空间的函数,\(F\)\(m\)个实函数组成:\(y_1(x_1,x_2,...,x_n),\cdots,y_m(x_1,x_2,\cdots,x_n)\)。这些函数的偏导数(存在时)可以组成\(m\)\(n\)列的矩阵,即雅可比矩阵:

\[ \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n}\\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} \]

该矩阵可用符号表示:
\[ J_F(x_1,...,x_n) \]
或者
\[ \frac{\partial(y_1,\cdots,y_m)}{\partial(x_1,\cdots,x_n)} \]
该矩阵第\(i\)行是由梯度函数的转置\(y_i(i=1,\cdots,m)\)表示的。
\(p\)\(\mathbb{R}^n\)中的一点,\(F\)\(p\)可微分,则\(J_F(p)\)是在该点的导数,\(J_F(p)\)\(F\)\(p\)点附近的最优线性逼近,当\(x\)足够靠近\(p\)时,有:
\[ F(x)\approx F(p)+J_F(p)\cdot(x-p) \]

转载于:https://www.cnblogs.com/yuyin/articles/10122879.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值