MIT 18.06 linear algebra lecture 9 线性相关 基 维数 笔记

线性无关

假设\(A\)\(m\times n\)矩阵,并且\(m<n\)(所以\(A\boldsymbol{x}=\boldsymbol{b}\)中未知数比等式数量更多)。\(A\)至少有一个自由变量,所以\(A\boldsymbol{x}=\boldsymbol{0}\)存在非零解,列的线性组合为零,所以\(A\)的列是线性相关的。

\(c_1\boldsymbol{x_1}+c_2\boldsymbol{x_2}+\cdots+c_n\boldsymbol{x_n}=\boldsymbol{0}\)仅在\(c_1,c_2,...,c_n\)均等于零成立时,向量\(\boldsymbol{x_1},\boldsymbol{x_2},\cdots,\boldsymbol{x_3}\)是线性无关的,换句话说,\(A\boldsymbol{x}=\boldsymbol{0}\)仅有解\(\boldsymbol{x}=\boldsymbol{0}\)时,\(A\)的列是线性无关的。

两个向量不在同一直线上时,是线性无关的;三个向量不在同一平面上时,是线性无关的。\(A\boldsymbol{x}\)\(A\)的列向量的线性组合,当\(A\)的零空间仅包含零向量时,\(A\)的列向量是线性无关的。

\(A\)的所有列都是主元列、秩是\(n\)、没有自由变量时,\(A\)的列向量是线性无关的,反之则是线性相关的。

生成空间

当空间由向量\(\boldsymbol{v_1}, \boldsymbol{v_2},...,\boldsymbol{v_k}\)的所有线性组合组成时,称该空间是由这些向量生成(span)的。例如\(A\)的列空间是由\(A\)的列向量生成的。
如果\(\boldsymbol{v_1},\boldsymbol{v_2},...,\boldsymbol{v_k}\)生成一个向量空间\(S\),则\(S\)是容纳这些向量的最小空间。

基和维数

向量空间的(basis)是一组向量\(\boldsymbol{v_1},\boldsymbol{v_2},...,\boldsymbol{v_d}\),有两个特性:

  • \(\boldsymbol{v_1},\boldsymbol{v_2},...,\boldsymbol{v_d}\)是线性无关的
  • \(\boldsymbol{v_1},\boldsymbol{v_2},...,\boldsymbol{v_d}\)生成该向量空间
    通过向量空间的基可以了解关于向量空间的一切。

\(\mathbb{R}^3\)为例,一个基为\(\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0 \end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\}\)。这组向量是线性无关的:
\[ c_1\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}+ c_1\begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}+ c_1\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}= \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \]
当且仅当\(c_1=c_2=c_3=0\)时,上述等式成立。这些向量生成\(\mathbb{R}^3\)
在下一节将会讨论到的,向量\(\begin{bmatrix}1\\1\\2\end{bmatrix}\)\(\begin{bmatrix}2\\2\\5\end{bmatrix}\)\(\begin{bmatrix}3\\3\\8\end{bmatrix}\)不构成\(\mathbb{R}^3\)的基,因为由这些向量构成的矩阵(作为列向量)仅有2个独立的行向量,第三个行向量并不是线性无关的。

通常情况下,如果\(\mathbb{R}^n\)中的\(n\)个向量构成的矩阵(作为列向量)这些向量即是\(\mathbb{R}^n\)的基。

向量\(\begin{bmatrix}1\\1\\2\end{bmatrix}\)\(\begin{bmatrix}2\\2\\5\end{bmatrix}\)\(\mathbb{R}^3\)生成一个平面,但是不构成\(\mathbb{R}^3\)的基。给定一个向量空间,构成每个基的向量个数都是确定的,称为向量空间的维数(dimension)所以\(\mathbb{R}^n\)的每个基都有\(n\)个向量。

列空间和零空间基础

假设:
\[ A= \begin{bmatrix} 1 & 2 & 3 & 1\\ 1 & 1 & 2 & 1\\ 1 & 2 & 3 & 1 \end{bmatrix} \]
根据定义,\(A\)的四个列向量生成\(A\)的列空间。第三列和第四列与第一列、第二列相关,而第一列和第二列是无关的。因此第一列和第二列是主元列,它们构成列空间\(C(A)\)的基。矩阵的秩为2。事实上:
\[ \text{rank}(A) = A\text{的主元列数量} = C(A)\text{的维数} \]
记住,秩是矩阵的,维数是子空间的。
\(A\)的列向量不是线性无关的,所以零空间\(N(A)\)不止包含零向量。因为第三列是第一二列之和,所以向量\(\left[\begin{array}{r}-1\\-1\\1\\0\end{array}\right]\)在零空间中,类似的\(\left[\begin{array}{r}1\\0\\0\\-1\end{array}\right]\)也在零空间中。这两个是\(A\boldsymbol{x}=\boldsymbol{0}\)的特解。

可以发现:
\[ N(A)\text{的维数}=\text{自由变量的个数}=n-r \]
所以知道\(N(A)\)的维数是\(4-2=2\)。这两个向量构成零空间的基。


笔记来源:MIT 18.06 lecture 9

转载于:https://www.cnblogs.com/yuyin/articles/10050516.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值