MIT 18.06 linear algebra lecture 2 消元法 笔记

消元法

基本上所有计算机软件都是用消元法(Elimination)解线性方程组。当\(\boldsymbol{A}\)矩阵可逆时,通过消元法可以求得\(A\boldsymbol{x}=\boldsymbol{b}\)的解\(\boldsymbol{x}\)
\[ A = \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix} \text{and } \boldsymbol{b} = \begin{bmatrix} 2\\ 12\\ 2\\ \end{bmatrix} \]
左上角的数字\(1\)称为第一个主元(pivot)。拿出矩阵第一行乘以合理的数字使得被矩阵第二行相减后,矩阵第二行第一个数字为\(0\),矩阵原来第二行的第一个数字\(3\)便被消去。

下面是该矩阵消元的步骤:
\[ A = \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -1\\ 0 & 4 & 1 \end{bmatrix} \to U= \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} \]
对于向量\(\boldsymbol{b}\)也要进行同样的消元操作。实际中为了方便操作,可以把\(A\)\(\boldsymbol{b}\)放置在一个矩阵中,称为增广矩阵(augmented matrix)。
\[ \left[\begin{array}{r|r} A & \boldsymbol b \end{array}\right]= \left[\begin{array}{rrr|r} 1 & 2 & 1 & 2\\ 3 & 8 & 1 & 12\\ 0 & 4 & 1 & 2 \end{array}\right] \]
等式\(A\boldsymbol{x}=\boldsymbol{b}\)经过消元转换,得到新的等式\(U\boldsymbol{x}=\boldsymbol{c}\)。其中,\[ U= \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{bmatrix} \]\[ \boldsymbol{c}= \begin{bmatrix} 2\\ 6\\ -10 \end{bmatrix}\]
通过\(U\boldsymbol{x}=\boldsymbol{c}\)得到的解与\(A\boldsymbol{x}=\boldsymbol{b}\)相同。

注意:
在消元时,可以换行,而且主元必须不能为\(0\)(在换行之后)。主元的乘积行列式,后面将会提到。

消元矩阵
  • \(3\times3\)矩阵和\(3\times1\)的向量乘积是一个\(3\times1\)的列向量,是矩阵列向量的线性组合
  • \(1\times3\)行向量和\(3\times3\)矩阵乘积是一个\(1\times3\)的行向量,是矩阵行向量的线性组合

通过矩阵进行消元,矩阵的第二行减去3倍的矩阵第一行:
\[ \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 4 & 1 \end{bmatrix} \]
用于消去第\(m\)行第\(n\)列元素的消元矩阵称为\(E_{21}\),上面的计算过程是\(E_{21}A\),三个消元得到\(U\)的步骤是\(E_{32}(E_{31}(E_{21}A))=U\),其中\(E_{31}=I\),因此\(E_{32}(E_{21}A)=U\)
矩阵的乘法满足结合律,因此\((E_{32}E_{21})A=U\),矩阵\(E_{32}E_{21}\)使得\(A\)转换为\(U\)\(E_{32}E_{21}\)的逆矩阵使得\(U\)转换为\(A\)
\(U\boldsymbol{x}=EA\boldsymbol{x}=E\boldsymbol{b}\)求解后,同样满足\(A\boldsymbol{x}=\boldsymbol{b}\),消元法的所有步骤都能反转。

置换矩阵交换矩阵的两行,例如
\[ P= \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \]
\(PA\)的第一行是\(A\)的第二行,\(PA\)的第二行是\(A\)的第一行。

逆矩阵

简单介绍下逆矩阵,假设
\[ E_{21}= \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \]
会将与其相乘的矩阵的第二行减去三倍的第一行(第一行、第三行未变化),为了“撤销“这个操作,给第二行加上三倍的第一行。
\[ E_{21}^{-1}= \begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \]
事实上,\(E_{21}^{-1}E_{21}=I\)


笔记来源:MIT 18.06 lecture2 note

转载于:https://www.cnblogs.com/yuyin/articles/10009181.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值