Floyd 学习笔记

#include <cstdio>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <map>
#include <stack>
#include <set>
#include <list>
#include <numeric>
#include <sstream>
#include <iomanip>
#include <limits>

#define CLR(a, b) memset(a, (b), sizeof(a))
#define pb push_back
#define debug puts("***debug***");

using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef pair<string, int> psi;
typedef pair<string, string> pss;

const double PI = acos(-1.0);
const double E = exp(1.0);
const double eps = 1e-30;

const int INF = 0x3f3f3f3f;
const int maxn = 3e2 + 10;
const int MOD = 1e9 + 7;

int G[maxn][maxn];

int n;

void Floyd()
{
    // 如果两个点之间能够有更短的路径 那么必然要引入第三个点 来进行路径转移
    // 假如我们借助第0个点来转移
    // 那么我们应该这么写

    //  for (int i = 0; i < n; i++)
    //      for (int i = 0; i < n; i++)
    //          if (G[i][j] > G[i][0] + G[0][j])
    //              G[i][j] = G[i][0] + G[0][j];

    // 由于第0个点已经经过转移后的最优状态了,那么我们通过第1个点来转移的时候,
    // 如果第1个点中有的点是经过第0个点转移的 那么 我们通过第1个点转移,实际上
    // 是先通过第0个点 再经过第1个点转移  
    // 代码应该这么写

    //  for (int i = 0; i < n; i++)
    //      for (int i = 0; i < n; i++)
    //          if (G[i][j] > G[i][1] + G[1][j])
    //              G[i][j] = G[i][1] + G[1][j];

    // 其实可以知道 每次转移 都是往下面的点转移的 那么可以直接用个FOR 来表示 就是下面的代码


    for (int k = 0; k < n; k++)         
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                if (G[i][j] > G[i][k] + G[k][j])
                    G[i][j] = G[i][k] + G[k][j];
}

int main()
{
    scanf("%d", &n);
    // input
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            scanf("%d", &G[i][j]);

    Floyd();

    // output
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
            printf("%d", &G[i][j]);
        cout << endl;
    }
}

转载于:https://www.cnblogs.com/Dup4/p/9433090.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值