计算几何模板
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <set> #include <map> #include <cmath> #include <queue> using namespace std; template <class T> void checkmin(T &t,T x) {if(x < t) t = x;} template <class T> void checkmax(T &t,T x) {if(x > t) t = x;} template <class T> void _checkmin(T &t,T x) {if(t==-1) t = x; if(x < t) t = x;} template <class T> void _checkmax(T &t,T x) {if(t==-1) t = x; if(x > t) t = x;} typedef pair <int,int> PII; typedef pair <double,double> PDD; typedef long long ll; #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end ; it ++) #define pb push_back #define mp make_pair #define EPS 1E-7 const double eps = 1e-8; const double pi = acos(-1.0); const double inf = 1e20; const int maxp = 1111; int dblcmp(double d) { if(fabs(d)<eps) return 0; return d>eps?1:-1; } inline double sqr(double x) {return x*x;} struct point { double x , y; point() {} point(double _x,double _y):x(_x),y(_y){}; point operator+(point p){return point(x+p.x,y+p.y);} point operator-(point p){return point(x-p.x,y-p.y);} point operator*(double b){return point(x*b,y*b);} double operator/(point p) { if(abs(p.x)>EPS) return x/p.x; else return y/p.y; } bool operator==(point p) const { return dblcmp(p.x-x)==0&&dblcmp(p.y-y)==0; } bool operator<(point p) const { return dblcmp(p.x-x)==0?dblcmp(y-p.y)<0:x<p.x; } void input() {scanf("%lf%lf",&x,&y);} void output() {printf("%lf %lf\n",x,y);} double len() {return hypot(x,y);} double len2() {return x*x+y*y;} double distance(point p) {return hypot(x-p.x,y-p.y);} point add(point p) {return point(x+p.x,y+p.y);} point sub(point p) {return point(x-p.x,y-p.y);} point mul(double b) {return point(x*b,y*b);} point div(double b) {return point(x/b,y/b);} double dot(point p) {return x*p.x+y*p.y;} double det(point p) {return x*p.y-y*p.x;} double rad(point a,point b) { point p = *this; return fabs(atan2(fabs(a.sub(p).det(b.sub(p))),a.sub(p).dot(b.sub(p)))); } point trunc(double r) { double l=len(); if (!dblcmp(l)) return *this; r/=l; return point(x*r,y*r); } point rotleft() {return point(-y,x);} point rotright() {return point(y,-x);} point rotate(point p,double angle){ //绕点p逆时针旋转angle角度 point v=this->sub(p); double c=cos(angle),s=sin(angle); return point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c); } }; struct line { point a , b; line() {} line(point _a,point _b):a(_a),b(_b){}; bool operator==(line v) {return a==v.a&&b==v.b;} //倾斜角angle line(point p,double angle) { a = p; if(dblcmp(angle-pi/2)==0) b=a.add(point(0,1)); else b=a.add(point(1,tan(angle))); } //ax+by+c=0 line(double _a,double _b,double _c) { if(dblcmp(_a)==0) { a=point(0,-_c/_b); b=point(1,-_c/_b); } else if(dblcmp(_b)==0) { a=point(-_c/_a,0); b=point(-_c/_a,1); } else { a=point(0,-_c/_b); b=point(1,(-_c-_a)/_b); } } void input() {a.input();b.input();} double length() {return a.distance(b);} double angle() { //直线倾斜角 0<=angle<180 double k=atan2(b.y-a.y,b.x-a.x); if (dblcmp(k)<0)k+=pi; if (dblcmp(k-pi)==0)k-=pi; return k; } //点和线段关系 //1 在逆时针 //2 在顺时针 //3 平行 int relation(point p) { int c=dblcmp(p.sub(a).det(b.sub(a))); if (c<0)return 1; if (c>0)return 2; return 3; } bool pointonseg(point p) { return dblcmp(p.sub(a).det(b.sub(a)))==0&&dblcmp(p.sub(a).dot(p.sub(b)))<=0; } bool parallel(line v) { return dblcmp(b.sub(a).det(v.b.sub(v.a)))==0; } //2 规范相交 //1 非规范相交 //0 不相交 int segcrossseg(line v) { int d1=dblcmp(b.sub(a).det(v.a.sub(a))); int d2=dblcmp(b.sub(a).det(v.b.sub(a))); int d3=dblcmp(v.b.sub(v.a).det(a.sub(v.a))); int d4=dblcmp(v.b.sub(v.a).det(b.sub(v.a))); if ((d1^d2)==-2&&(d3^d4)==-2)return 2; return (d1==0&&dblcmp(v.a.sub(a).dot(v.a.sub(b)))<=0|| d2==0&&dblcmp(v.b.sub(a).dot(v.b.sub(b)))<=0|| d3==0&&dblcmp(a.sub(v.a).dot(a.sub(v.b)))<=0|| d4==0&&dblcmp(b.sub(v.a).dot(b.sub(v.b)))<=0); } int linecrossseg(line v) { //*this seg v line int d1=dblcmp(b.sub(a).det(v.a.sub(a))); int d2=dblcmp(b.sub(a).det(v.b.sub(a))); if ((d1^d2)==-2)return 2; return (d1==0||d2==0); } //0 平行 //1 重合 //2 相交 int linecrossline(line v) { if ((*this).parallel(v)) return v.relation(a)==3; return 2; } point crosspoint(line v) { double a1=v.b.sub(v.a).det(a.sub(v.a)); double a2=v.b.sub(v.a).det(b.sub(v.a)); return point((a.x*a2-b.x*a1)/(a2-a1),(a.y*a2-b.y*a1)/(a2-a1)); } double dispointtoline(point p) { return fabs(p.sub(a).det(b.sub(a)))/length(); } double dispointtoseg(point p) { if (dblcmp(p.sub(b).dot(a.sub(b)))<0||dblcmp(p.sub(a).dot(b.sub(a)))<0) return min(p.distance(a),p.distance(b)); return dispointtoline(p); } point lineprog(point p) { return a.add(b.sub(a).mul(b.sub(a).dot(p.sub(a))/b.sub(a).len2())); } point symmetrypoint(point p) { point q=lineprog(p); return point(2*q.x-p.x,2*q.y-p.y); } }; struct circle { point p; double r; circle() {} circle(point _p,double _r):p(_p),r(_r){}; circle(double x,double y,double _r):p(point(x,y)),r(_r){}; circle(point a,point b,point c) {//三角形的外接圆 p=line(a.add(b).div(2),a.add(b).div(2).add(b.sub(a).rotleft())).crosspoint(line(c.add(b).div(2),c.add(b).div(2).add(b.sub(c).rotleft()))); r=p.distance(a); } circle(point a,point b,point c,bool t) {//三角形的内切圆 line u,v; double m=atan2(b.y-a.y,b.x-a.x),n=atan2(c.y-a.y,c.x-a.x); u.a=a; u.b=u.a.add(point(cos((n+m)/2),sin((n+m)/2))); v.a=b; m=atan2(a.y-b.y,a.x-b.x),n=atan2(c.y-b.y,c.x-b.x); v.b=v.a.add(point(cos((n+m)/2),sin((n+m)/2))); p=u.crosspoint(v); r=line(a,b).dispointtoseg(p); } void input() {p.input();scanf("%lf",&r);} void output() {printf("%.2lf %.2lf %.2lf\n",p.x,p.y,r);} bool operator==(circle v) { return ((p==v.p)&&dblcmp(r-v.r)==0); } bool operator<(circle v) const { return ((p<v.p)||(p==v.p)&&dblcmp(r-v.r)<0); } double area() {return pi*sqr(r);} double circumference() {return 2*pi*r;} //0 圆外 //1 圆上 //2 圆内 int relation(point b) { double dst=b.distance(p); if (dblcmp(dst-r)<0)return 2; if (dblcmp(dst-r)==0)return 1; return 0; } int relationseg(line v) { double dst=v.dispointtoseg(p); if (dblcmp(dst-r)<0)return 2; if (dblcmp(dst-r)==0)return 1; return 0; } int relationline(line v) { double dst=v.dispointtoline(p); if (dblcmp(dst-r)<0)return 2; if (dblcmp(dst-r)==0)return 1; return 0; } //过a b两点 半径r的两个圆 int getcircle(point a,point b,double r,circle&c1,circle&c2) { circle x(a,r),y(b,r); int t=x.pointcrosscircle(y,c1.p,c2.p); if (!t)return 0; c1.r=c2.r=r; return t; } //与直线u相切 过点q 半径r1的圆 int getcircle(line u,point q,double r1,circle &c1,circle &c2) { double dis=u.dispointtoline(q); if (dblcmp(dis-r1*2)>0)return 0; if (dblcmp(dis)==0) { c1.p=q.add(u.b.sub(u.a).rotleft().trunc(r1)); c2.p=q.add(u.b.sub(u.a).rotright().trunc(r1)); c1.r=c2.r=r1; return 2; } line u1=line(u.a.add(u.b.sub(u.a).rotleft().trunc(r1)),u.b.add(u.b.sub(u.a).rotleft().trunc(r1))); line u2=line(u.a.add(u.b.sub(u.a).rotright().trunc(r1)),u.b.add(u.b.sub(u.a).rotright().trunc(r1))); circle cc=circle(q,r1); point p1,p2; if (!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2); c1=circle(p1,r1); if (p1==p2) { c2=c1;return 1; } c2=circle(p2,r1); return 2; } //同时与直线u,v相切 半径r1的圆 int getcircle(line u,line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4) { if (u.parallel(v))return 0; line u1=line(u.a.add(u.b.sub(u.a).rotleft().trunc(r1)),u.b.add(u.b.sub(u.a).rotleft().trunc(r1))); line u2=line(u.a.add(u.b.sub(u.a).rotright().trunc(r1)),u.b.add(u.b.sub(u.a).rotright().trunc(r1))); line v1=line(v.a.add(v.b.sub(v.a).rotleft().trunc(r1)),v.b.add(v.b.sub(v.a).rotleft().trunc(r1))); line v2=line(v.a.add(v.b.sub(v.a).rotright().trunc(r1)),v.b.add(v.b.sub(v.a).rotright().trunc(r1))); c1.r=c2.r=c3.r=c4.r=r1; c1.p=u1.crosspoint(v1); c2.p=u1.crosspoint(v2); c3.p=u2.crosspoint(v1); c4.p=u2.crosspoint(v2); return 4; } //同时与不相交圆cx,cy相切 半径为r1的圆 int getcircle(circle cx,circle cy,double r1,circle&c1,circle&c2) { circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r); int t=x.pointcrosscircle(y,c1.p,c2.p); if (!t)return 0; c1.r=c2.r=r1; return t; } int pointcrossline(line v,point &p1,point &p2) { //求与线段交要先判断relationseg if (!(*this).relationline(v))return 0; point a=v.lineprog(p); double d=v.dispointtoline(p); d=sqrt(r*r-d*d); if (dblcmp(d)==0) { p1=a; p2=a; return 1; } p1=a.sub(v.b.sub(v.a).trunc(d)); p2=a.add(v.b.sub(v.a).trunc(d)); return 2; } //5 相离 //4 外切 //3 相交 //2 内切 //1 内含 int relationcircle(circle v) { double d=p.distance(v.p); if (dblcmp(d-r-v.r)>0)return 5; if (dblcmp(d-r-v.r)==0)return 4; double l=fabs(r-v.r); if (dblcmp(d-r-v.r)<0&&dblcmp(d-l)>0)return 3; if (dblcmp(d-l)==0)return 2; if (dblcmp(d-l)<0)return 1; } int pointcrosscircle(circle v,point &p1,point &p2) { int rel=relationcircle(v); if (rel==1||rel==5)return 0; double d=p.distance(v.p); double l=(d+(sqr(r)-sqr(v.r))/d)/2; double h=sqrt(sqr(r)-sqr(l)); p1=p.add(v.p.sub(p).trunc(l).add(v.p.sub(p).rotleft().trunc(h))); p2=p.add(v.p.sub(p).trunc(l).add(v.p.sub(p).rotright().trunc(h))); if (rel==2||rel==4) return 1; return 2; } //过一点做圆的切线 (先判断点和圆关系) int tangentline(point q,line &u,line &v) { int x=relation(q); if (x==2)return 0; if (x==1) { u=line(q,q.add(q.sub(p).rotleft())); v=u; return 1; } double d=p.distance(q); double l=sqr(r)/d; double h=sqrt(sqr(r)-sqr(l)); u=line(q,p.add(q.sub(p).trunc(l).add(q.sub(p).rotleft().trunc(h)))); v=line(q,p.add(q.sub(p).trunc(l).add(q.sub(p).rotright().trunc(h)))); return 2; } double areacircle(circle v) { int rel=relationcircle(v); if (rel>=4)return 0.0; if (rel<=2)return min(area(),v.area()); double d=p.distance(v.p); double hf=(r+v.r+d)/2.0; double ss=2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d)); double a1=acos((r*r+d*d-v.r*v.r)/(2.0*r*d)); a1=a1*r*r; double a2=acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d)); a2=a2*v.r*v.r; return a1+a2-ss; } double areatriangle(point a,point b) { if (dblcmp(p.sub(a).det(p.sub(b))==0))return 0.0; point q[5]; int len=0; q[len++]=a; line l(a,b); point p1,p2; if (pointcrossline(l,q[1],q[2])==2) { if (dblcmp(a.sub(q[1]).dot(b.sub(q[1])))<0)q[len++]=q[1]; if (dblcmp(a.sub(q[2]).dot(b.sub(q[2])))<0)q[len++]=q[2]; } q[len++]=b; if (len==4&&(dblcmp(q[0].sub(q[1]).dot(q[2].sub(q[1])))>0))swap(q[1],q[2]); double res=0; int i; for (i=0;i<len-1;i++) { if (relation(q[i])==0||relation(q[i+1])==0) { double arg=p.rad(q[i],q[i+1]); res+=r*r*arg/2.0; } else res+=fabs(q[i].sub(p).det(q[i+1].sub(p))/2.0); } return res; } }; struct polygon { int n; point p[maxp]; line l[maxp]; void input() { n = 4; for(int i=0;i<n;i++) p[i].input(); } void add(point q) {p[n++]=q;} void getline() { for(int i=0;i<n;i++) l[i]=line(p[i],p[(i+1)%n]); } struct cmp { point p; cmp(const point &p0){p=p0;} bool operator()(const point &aa,const point &bb) { point a=aa,b=bb; int d=dblcmp(a.sub(p).det(b.sub(p))); if (d==0) return dblcmp(a.distance(p)-b.distance(p))<0; return d>0; } }; void norm() { point mi=p[0]; for (int i=1;i<n;i++)mi=min(mi,p[i]); sort(p,p+n,cmp(mi)); } void getconvex(polygon &convex) { int i,j,k; sort(p,p+n); convex.n=n; for (i=0;i<min(n,2);i++) convex.p[i]=p[i]; if (n<=2)return; int &top=convex.n; top=1; for (i=2;i<n;i++) { while (top&&convex.p[top].sub(p[i]).det(convex.p[top-1].sub(p[i]))<=0) top--; convex.p[++top]=p[i]; } int temp=top; convex.p[++top]=p[n-2]; for (i=n-3;i>=0;i--) { while (top!=temp&&convex.p[top].sub(p[i]).det(convex.p[top-1].sub(p[i]))<=0) top--; convex.p[++top]=p[i]; } } bool isconvex() { bool s[3]; memset(s,0,sizeof(s)); int i,j,k; for (i=0;i<n;i++) { j=(i+1)%n; k=(j+1)%n; s[dblcmp(p[j].sub(p[i]).det(p[k].sub(p[i])))+1]=1; if (s[0]&&s[2])return 0; } return 1; } //3 点上 //2 边上 //1 内部 //0 外部 int relationpoint(point q) { int i,j; for (i=0;i<n;i++) if(p[i]==q) return 3; getline(); for (i=0;i<n;i++) if(l[i].pointonseg(q)) return 2; int cnt=0; for (i=0;i<n;i++) { j=(i+1)%n; int k=dblcmp(q.sub(p[j]).det(p[i].sub(p[j]))); int u=dblcmp(p[i].y-q.y); int v=dblcmp(p[j].y-q.y); if (k>0&&u<0&&v>=0)cnt++; if (k<0&&v<0&&u>=0)cnt--; } return cnt!=0; } //1 在多边形内长度为正 //2 相交或与边平行 //0 无任何交点 int relationline(line u) { int i,j,k=0; getline(); for (i=0;i<n;i++) { if (l[i].segcrossseg(u)==2) return 1; if (l[i].segcrossseg(u)==1) k=1; } if (!k)return 0; vector<point>vp; for (i=0;i<n;i++) { if (l[i].segcrossseg(u)) { if (l[i].parallel(u)) { vp.pb(u.a); vp.pb(u.b); vp.pb(l[i].a); vp.pb(l[i].b); continue; } vp.pb(l[i].crosspoint(u)); } } sort(vp.begin(),vp.end()); int sz=vp.size(); for (i=0;i<sz-1;i++) { point mid=vp[i].add(vp[i+1]).div(2); if (relationpoint(mid)==1)return 1; } return 2; } //直线u切割凸多边形左侧 //注意直线方向 void convexcut(line u,polygon &po) { int i,j,k; int &top=po.n; top=0; for (i=0;i<n;i++) { int d1=dblcmp(p[i].sub(u.a).det(u.b.sub(u.a))); int d2=dblcmp(p[(i+1)%n].sub(u.a).det(u.b.sub(u.a))); if (d1>=0)po.p[top++]=p[i]; if (d1*d2<0)po.p[top++]=u.crosspoint(line(p[i],p[(i+1)%n])); } } double getcircumference() { double sum=0; int i; for (i=0;i<n;i++) sum+=p[i].distance(p[(i+1)%n]); return sum; } double getarea() { double sum=0; int i; for (i=0;i<n;i++) sum+=p[i].det(p[(i+1)%n]); return fabs(sum)/2; } bool getdir() { //1代表逆时针 0代表顺时针 double sum=0; int i; for(i=0;i<n;i++) sum+=p[i].det(p[(i+1)%n]); if(dblcmp(sum)>0) return 1; return 0; } point getbarycentre() { point ret(0,0); double area=0; int i; for (i=1;i<n-1;i++) { double tmp=p[i].sub(p[0]).det(p[i+1].sub(p[0])); if (dblcmp(tmp)==0)continue; area+=tmp; ret.x+=(p[0].x+p[i].x+p[i+1].x)/3*tmp; ret.y+=(p[0].y+p[i].y+p[i+1].y)/3*tmp; } if(dblcmp(area)) ret=ret.div(area); return ret; } double areaintersection(polygon po) { } double areaunion(polygon po) { return getarea()+po.getarea()-areaintersection(po); } double areacircle(circle c) { int i,j,k,l,m; double ans=0; for (i=0;i<n;i++) { int j=(i+1)%n; if (dblcmp(p[j].sub(c.p).det(p[i].sub(c.p)))>=0) ans+=c.areatriangle(p[i],p[j]); else ans-=c.areatriangle(p[i],p[j]); } return fabs(ans); } //多边形和圆关系 //0 一部分在圆外 //1 与圆某条边相切 //2 完全在圆内 int relationcircle(circle c) { getline(); int i,x=2; if (relationpoint(c.p)!=1)return 0; for (i=0;i<n;i++) { if (c.relationseg(l[i])==2)return 0; if (c.relationseg(l[i])==1)x=1; } return x; } void find(int st,point tri[],circle &c) { if ( !st ) c=circle(point(0,0),-2); if (st==1) c=circle(tri[0],0); if (st==2) c=circle(tri[0].add(tri[1]).div(2),tri[0].distance(tri[1])/2.0); if (st==3) c=circle(tri[0],tri[1],tri[2]); } void solve(int cur,int st,point tri[],circle &c) { find(st,tri,c); if (st==3)return; int i; for (i=0;i<cur;i++) { if (dblcmp(p[i].distance(c.p)-c.r)>0) { tri[st]=p[i]; solve(i,st+1,tri,c); } } } circle mincircle() {//点集最小圆覆盖 random_shuffle(p,p+n); point tri[4]; circle c; solve(n,0,tri,c); return c; } int circlecover(double r) {//单位圆覆盖 int ans=0,i,j; vector<pair<double,int> >v; for (i=0;i<n;i++) { v.clear(); for (j=0;j<n;j++)if (i!=j) { point q=p[i].sub(p[j]); double d=q.len(); if (dblcmp(d-2*r)<=0) { double arg=atan2(q.y,q.x); if (dblcmp(arg)<0)arg+=2*pi; double t=acos(d/(2*r)); v.push_back(make_pair(arg-t+2*pi,-1)); v.push_back(make_pair(arg+t+2*pi,1)); } } sort(v.begin(),v.end()); int cur=0; for (j=0;j<v.size();j++) { if (v[j].second==-1)++cur; else --cur; ans=max(ans,cur); } } return ans+1; } int pointinpolygon(point q) { //点在凸多边形内部的判定 if (getdir())reverse(p,p+n); if (dblcmp(q.sub(p[0]).det(p[n-1].sub(p[0])))==0) { if (line(p[n-1],p[0]).pointonseg(q))return n-1; return -1; } int low=1,high=n-2,mid; while (low<=high) { mid=(low+high)>>1; if (dblcmp(q.sub(p[0]).det(p[mid].sub(p[0])))>=0&&dblcmp(q.sub(p[0]).det(p[mid+1].sub(p[0])))<0) { polygon c; c.p[0]=p[mid]; c.p[1]=p[mid+1]; c.p[2]=p[0]; c.n=3; if (c.relationpoint(q))return mid; return -1; } if (dblcmp(q.sub(p[0]).det(p[mid].sub(p[0])))>0) low=mid+1; else high=mid-1; } return -1; } }; struct polygons { vector<polygon>p; polygons() {p.clear();} void clear() {p.clear();} void push(polygon q) { if (dblcmp(q.getarea()))p.pb(q); } vector<pair<double,int> >e; void ins(point s,point t,point X,int i) { double r=fabs(t.x-s.x)>eps?(X.x-s.x)/(t.x-s.x):(X.y-s.y)/(t.y-s.y); r=min(r,1.0);r=max(r,0.0); e.pb(mp(r,i)); } double polyareaunion() { double ans=0.0; int c0,c1,c2,i,j,k,w; for (i=0;i<p.size();i++) if (p[i].getdir()==0)reverse(p[i].p,p[i].p+p[i].n); for (i=0;i<p.size();i++) { for (k=0;k<p[i].n;k++) { point &s=p[i].p[k],&t=p[i].p[(k+1)%p[i].n]; if (!dblcmp(s.det(t)))continue; e.clear(); e.pb(mp(0.0,1)); e.pb(mp(1.0,-1)); for (j=0;j<p.size();j++)if (i!=j) { for (w=0;w<p[j].n;w++) { point a=p[j].p[w],b=p[j].p[(w+1)%p[j].n],c=p[j].p[(w-1+p[j].n)%p[j].n]; c0=dblcmp(t.sub(s).det(c.sub(s))); c1=dblcmp(t.sub(s).det(a.sub(s))); c2=dblcmp(t.sub(s).det(b.sub(s))); if (c1*c2<0)ins(s,t,line(s,t).crosspoint(line(a,b)),-c2); else if (!c1&&c0*c2<0)ins(s,t,a,-c2); else if (!c1&&!c2) { int c3=dblcmp(t.sub(s).det(p[j].p[(w+2)%p[j].n].sub(s))); int dp=dblcmp(t.sub(s).dot(b.sub(a))); if (dp&&c0)ins(s,t,a,dp>0?c0*((j>i)^(c0<0)):-(c0<0)); if (dp&&c3)ins(s,t,b,dp>0?-c3*((j>i)^(c3<0)):c3<0); } } } sort(e.begin(),e.end()); int ct=0; double tot=0.0,last; for (j=0;j<e.size();j++) { if (ct==2)tot+=e[j].first-last; ct+=e[j].second; last=e[j].first; } ans+=s.det(t)*tot; } } return fabs(ans)*0.5; } }; const int maxn=500; struct circles { circle c[maxn]; double ans[maxn];//ans[i]表示被覆盖了i次的面积 double pre[maxn]; int n; circles(){} void add(circle cc) {c[n++]=cc;} bool inner(circle x,circle y) { if (x.relationcircle(y)!=1)return 0; return dblcmp(x.r-y.r)<=0?1:0; } void init_or() {//圆的面积并去掉内含的圆 int i,j,k=0; bool mark[maxn]={0}; for (i=0;i<n;i++) { for (j=0;j<n;j++)if (i!=j&&!mark[j]) { if ((c[i]==c[j])||inner(c[i],c[j]))break; } if (j<n)mark[i]=1; } for (i=0;i<n;i++)if (!mark[i])c[k++]=c[i]; n=k; } void init_and() {//圆的面积交去掉内含的圆 int i,j,k=0; bool mark[maxn]={0}; for (i=0;i<n;i++) { for (j=0;j<n;j++)if (i!=j&&!mark[j]) { if ((c[i]==c[j])||inner(c[j],c[i]))break; } if (j<n)mark[i]=1; } for(i=0;i<n;i++) if(!mark[i]) c[k++]=c[i]; n=k; } double areaarc(double th,double r) { return 0.5*sqr(r)*(th-sin(th)); } void getarea() { int i,j,k; memset(ans,0,sizeof(ans)); vector<pair<double,int> >v; for (i=0;i<n;i++) { v.clear(); v.push_back(make_pair(-pi,1)); v.push_back(make_pair(pi,-1)); for (j=0;j<n;j++)if (i!=j) { point q=c[j].p.sub(c[i].p); double ab=q.len(),ac=c[i].r,bc=c[j].r; if (dblcmp(ab+ac-bc)<=0) { v.push_back(make_pair(-pi,1)); v.push_back(make_pair(pi,-1)); continue; } if(dblcmp(ab+bc-ac)<=0) continue; if(dblcmp(ab-ac-bc)>0) continue; double th=atan2(q.y,q.x),fai=acos((ac*ac+ab*ab-bc*bc)/(2.0*ac*ab)); double a0=th-fai; if (dblcmp(a0+pi)<0)a0+=2*pi; double a1=th+fai; if (dblcmp(a1-pi)>0)a1-=2*pi; if (dblcmp(a0-a1)>0) { v.push_back(make_pair(a0,1)); v.push_back(make_pair(pi,-1)); v.push_back(make_pair(-pi,1)); v.push_back(make_pair(a1,-1)); } else { v.push_back(make_pair(a0,1)); v.push_back(make_pair(a1,-1)); } } sort(v.begin(),v.end()); int cur=0; for (j=0;j<v.size();j++) { if (cur&&dblcmp(v[j].first-pre[cur])) { ans[cur]+=areaarc(v[j].first-pre[cur],c[i].r); ans[cur]+=0.5*point(c[i].p.x+c[i].r*cos(pre[cur]),c[i].p.y+c[i].r*sin(pre[cur])).det(point(c[i].p.x+c[i].r*cos(v[j].first),c[i].p.y+c[i].r*sin(v[j].first))); } cur+=v[j].second; pre[cur]=v[j].first; } } for (i=1;i<=n;i++) ans[i]-=ans[i+1]; } }; struct halfplane:public line { double angle; halfplane(){} //表示向量 a->b逆时针(左侧)的半平面 halfplane(point _a,point _b) { a = _a; b = _b; } halfplane(line v) {a=v.a;b=v.b;} void calcangle() {angle=atan2(b.y-a.y,b.x-a.x);} bool operator<(const halfplane &b)const { return angle<b.angle; } }; struct halfplanes { int n; halfplane hp[maxp]; point p[maxp]; int que[maxp]; int st,ed; void push(halfplane tmp) {hp[n++]=tmp;} void unique() { int m=1,i; for (i=1;i<n;i++) { if (dblcmp(hp[i].angle-hp[i-1].angle))hp[m++]=hp[i]; else if (dblcmp(hp[m-1].b.sub(hp[m-1].a).det(hp[i].a.sub(hp[m-1].a))>0))hp[m-1]=hp[i]; } n=m; } bool halfplaneinsert() { int i; for (i=0;i<n;i++)hp[i].calcangle(); sort(hp,hp+n); unique(); que[st=0]=0; que[ed=1]=1; p[1]=hp[0].crosspoint(hp[1]); for (i=2;i<n;i++) { while (st<ed&&dblcmp((hp[i].b.sub(hp[i].a).det(p[ed].sub(hp[i].a))))<0)ed--; while (st<ed&&dblcmp((hp[i].b.sub(hp[i].a).det(p[st+1].sub(hp[i].a))))<0)st++; que[++ed]=i; if (hp[i].parallel(hp[que[ed-1]]))return false; p[ed]=hp[i].crosspoint(hp[que[ed-1]]); } while(st<ed&&dblcmp(hp[que[st]].b.sub(hp[que[st]].a).det(p[ed].sub(hp[que[st]].a)))<0) ed--; while(st<ed&&dblcmp(hp[que[ed]].b.sub(hp[que[ed]].a).det(p[st+1].sub(hp[que[ed]].a)))<0) st++; if (st+1>=ed)return false; return true; } void getconvex(polygon &con) { p[st]=hp[que[st]].crosspoint(hp[que[ed]]); con.n=ed-st+1; int j=st,i=0; for (;j<=ed;i++,j++) con.p[i]=p[j]; } }; struct point3 { double x,y,z; point3(){} point3(double _x,double _y,double _z): x(_x),y(_y),z(_z){}; void input() {scanf("%lf%lf%lf",&x,&y,&z);} void output() {printf("%.2lf %.2lf %.2lf\n",x,y,z);} bool operator==(point3 a) { return dblcmp(a.x-x)==0&&dblcmp(a.y-y)==0&&dblcmp(a.z-z)==0; } bool operator<(point3 a)const { return dblcmp(a.x-x)==0?dblcmp(y-a.y)==0?dblcmp(z-a.z)<0:y<a.y:x<a.x; } double len() { return sqrt(len2()); } double len2() { return x*x+y*y+z*z; } double distance(point3 p) { return sqrt((p.x-x)*(p.x-x)+(p.y-y)*(p.y-y)+(p.z-z)*(p.z-z)); } point3 add(point3 p) { return point3(x+p.x,y+p.y,z+p.z); } point3 sub(point3 p) { return point3(x-p.x,y-p.y,z-p.z); } point3 mul(double d) { return point3(x*d,y*d,z*d); } point3 div(double d) { return point3(x/d,y/d,z/d); } double dot(point3 p) { return x*p.x+y*p.y+z*p.z; } point3 det(point3 p) { return point3(y*p.z-p.y*z,p.x*z-x*p.z,x*p.y-p.x*y); } double rad(point3 a,point3 b) { point3 p=(*this); return acos(a.sub(p).dot(b.sub(p))/(a.distance(p)*b.distance(p))); } point3 trunc(double r) { r/=len(); return point3(x*r,y*r,z*r); } point3 rotate(point3 o,double r) { } }; struct line3 { point3 a,b; line3(){} line3(point3 _a,point3 _b):a(_a),b(_b) {}; bool operator==(line3 v) { return (a==v.a)&&(b==v.b); } void input() {a.input();b.input();} double length() {return a.distance(b);} bool pointonseg(point3 p) { return dblcmp(p.sub(a).det(p.sub(b)).len())==0&&dblcmp(a.sub(p).dot(b.sub(p)))<=0; } double dispointtoline(point3 p) { return b.sub(a).det(p.sub(a)).len()/a.distance(b); } double dispointtoseg(point3 p) { if (dblcmp(p.sub(b).dot(a.sub(b)))<0||dblcmp(p.sub(a).dot(b.sub(a)))<0) return min(p.distance(a),p.distance(b)); return dispointtoline(p); } point3 lineprog(point3 p) { return a.add(b.sub(a).trunc(b.sub(a).dot(p.sub(a))/b.distance(a))); } point3 rotate(point3 p,double ang) { //p绕此向量逆时针arg角度 if (dblcmp((p.sub(a).det(p.sub(b)).len()))==0)return p; point3 f1=b.sub(a).det(p.sub(a)); point3 f2=b.sub(a).det(f1); double len=fabs(a.sub(p).det(b.sub(p)).len()/a.distance(b)); f1=f1.trunc(len);f2=f2.trunc(len); point3 h=p.add(f2); point3 pp=h.add(f1); return h.add((p.sub(h)).mul(cos(ang*1.0))).add((pp.sub(h)).mul(sin(ang*1.0))); } }; struct plane { point3 a,b,c,o; plane(){} plane(point3 _a,point3 _b,point3 _c) { a=_a; b=_b; c=_c; o=pvec(); } plane(double _a,double _b,double _c,double _d) { //ax+by+cz+d=0 o=point3(_a,_b,_c); if (dblcmp(_a)!=0) a=point3((-_d-_c-_b)/_a,1,1); else if (dblcmp(_b)!=0) a=point3(1,(-_d-_c-_a)/_b,1); else if (dblcmp(_c)!=0) a=point3(1,1,(-_d-_a-_b)/_c); } void input() { a.input(); b.input(); c.input(); o=pvec(); } point3 pvec() { return b.sub(a).det(c.sub(a)); } bool pointonplane(point3 p) { //点是否在平面上 return dblcmp(p.sub(a).dot(o))==0; } //0 不在 //1 在边界上 //2 在内部 int pointontriangle(point3 p) { //点是否在空间三角形abc上 if (!pointonplane(p))return 0; double s=a.sub(b).det(c.sub(b)).len(); double s1=p.sub(a).det(p.sub(b)).len(); double s2=p.sub(a).det(p.sub(c)).len(); double s3=p.sub(b).det(p.sub(c)).len(); if (dblcmp(s-s1-s2-s3))return 0; if (dblcmp(s1)&&dblcmp(s2)&&dblcmp(s3))return 2; return 1; } //判断两平面关系 //0 相交 //1 平行但不重合 //2 重合 bool relationplane(plane f) { if (dblcmp(o.det(f.o).len()))return 0; if (pointonplane(f.a))return 2; return 1; } double angleplane(plane f) { //两平面夹角 return acos(o.dot(f.o)/(o.len()*f.o.len())); } double dispoint(point3 p) { //点到平面距离 return fabs(p.sub(a).dot(o)/o.len()); } point3 pttoplane(point3 p) { //点到平面最近点 line3 u=line3(p,p.add(o)); crossline(u,p); return p; } int crossline(line3 u,point3 &p) { //平面和直线的交点 double x=o.dot(u.b.sub(a)); double y=o.dot(u.a.sub(a)); double d=x-y; if (dblcmp(fabs(d))==0)return 0; p=u.a.mul(x).sub(u.b.mul(y)).div(d); return 1; } int crossplane(plane f,line3 &u) { //平面和平面的交线 point3 oo=o.det(f.o); point3 v=o.det(oo); double d=fabs(f.o.dot(v)); if (dblcmp(d)==0)return 0; point3 q=a.add(v.mul(f.o.dot(f.a.sub(a))/d)); u=line3(q,q.add(oo)); return 1; } }; int main() { printf("hello,world!\n"); return 0; }