计算几何 - 二维几何基础 (模板)

这篇博客详述了二维几何的基本概念,包括点积、叉积、旋转、单位法线向量、二直线交点计算、点到直线和线段的距离、点在线段上的投影及线段相交判断等关键知识点,还涵盖了多边形面积的计算。是ACM竞赛和计算几何学习者的重要参考资料。
摘要由CSDN通过智能技术生成



这里总结一下二维几何基础知识!


常用定义:

//定义点的类型 
struct Point {
	double x, y;
	Point(double x = 0, double y = 0) : x(x) , y(y) { }  //构造函数,方便代码编写 
};

typedef Point Vector;  //从程序实现上,Vector只是Point的别名 

//向量 + 向量 = 向量 ,点 + 向量 = 点
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
//点 - 点 = 向量
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
//向量 * 数 = 向量 
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
//向量 / 数 = 向量 
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 

bool operator < (const Point& a, const Point& b) {
	return a.x < b.x || (a.x == b.x && a.y < b.y);
} 

const double eps = 1e-10;
int dcmp(double x) {
	if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}



点积:

//点积 
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求点积 
double Length(Vector A) { return sqrt(Dot(A, A)); }			 //求向量长度 
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之间的夹角 



叉积:

//叉积 
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉积 
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根据叉积求三角形面积的两倍 



旋转:

//旋转 
Vector Rotate(Vector A, double rad) {//rad是弧度 
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
} 



向量的单位法线:

//向量单位法向量,调用前请确保A不是零向量 
Vector Normal(Vector A) {  
    double L = Length(A);  
    return Vector(-A.y/L, A.x/L);  
}



二直线交点:

//二直线交点(参数式) 
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
	Vector u = P - Q;
	double t = Cross(w, u) / Cross(v, w);
	return P + v * t;
} 



点到直线距离 :

//点到直线距离  
double DistanceToLine(Point P, Point A, Point B) {  
    Vector v1 = B-A, v2 = P - A;  
    return fabs(Cross(v1,v2) / Length(v1));  //如果不取绝对值,得到的是有向距离 
}  



点到线段距离  :

//点到线段距离  
double DistanceToSegment(Point P, Point A, Point B) {  
    if(A==B) return Length(P-A);  
    Vector v1 = B - A, v2 = P - A, v3 = P - B;  
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);  
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);  
    else return fabs(Cross(v1, v2)) / Length(v1);  
}  



点在直线上的投影:

//点在直线上的投影
Point GetLineProjection(Point P, Point A, Point B) {
	Vector v = B - A;
	return A + v * ( Dot(v, P-A) / Dot(v, v) ); 
}  



线段相交判定:

//线段相交判定
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
			c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} 



判断一个点是否在一条线段上:

//判断一个点是否在一条线段上
bool OnSegment(Point p, Point a1, Point a2) {
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
} 



多边形面积:

//多边形面积  
double ConvexPolygonArea(Point* p, int n) {  
    double area = 0;  
    for(int i = 1; i < n-1; i++)  
        area += Cross(p[i] - p[0], p[i + 1] - p[0]);  
    return area / 2;  
}  



总结:

//定义点的类型 
struct Point {
	double x, y;
	Point(double x = 0, double y = 0) : x(x) , y(y) { }  //构造函数,方便代码编写 
};

typedef Point Vector;  //从程序实现上,Vector只是Point的别名 

//向量 + 向量 = 向量 ,点 + 向量 = 点
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
//点 - 点 = 向量
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
//向量 * 数 = 向量 
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
//向量 / 数 = 向量 
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 

bool operator < (const Point& a, const Point& b) {
	return a.x < b.x || (a.x == b.x && a.y < b.y);
} 

const double eps = 1e-10;
int dcmp(double x) {
	if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}

//点积 
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求点积 
double Length(Vector A) { return sqrt(Dot(A, A)); }			 //求向量长度 
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之间的夹角 

//叉积 
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉积 
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根据叉积求三角形面积的两倍 

//旋转 
Vector Rotate(Vector A, double rad) {//rad是弧度 
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
} 

//向量单位法向量,调用前请确保A不是零向量 
Vector Normal(Vector A) {  
    double L = Length(A);  
    return Vector(-A.y/L, A.x/L);  
}

//二直线交点(参数式) 
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
	Vector u = P - Q;
	double t = Cross(w, u) / Cross(v, w);
	return P + v * t;
} 

//点到直线距离  
double DistanceToLine(Point P, Point A, Point B) {  
    Vector v1 = B-A, v2 = P - A;  
    return fabs(Cross(v1,v2) / Length(v1));  //如果不取绝对值,得到的是有向距离 
}  
  
//点到线段距离  
double DistanceToSegment(Point P, Point A, Point B) {  
    if(A==B) return Length(P-A);  
    Vector v1 = B - A, v2 = P - A, v3 = P - B;  
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);  
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);  
    else return fabs(Cross(v1, v2)) / Length(v1);  
}  
  
//点在直线上的投影
Point GetLineProjection(Point P, Point A, Point B) {
	Vector v = B - A;
	return A + v * ( Dot(v, P-A) / Dot(v, v) ); 
}  

//线段相交判定
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
			c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} 

//判断一个点是否在一条线段上
bool OnSegment(Point p, Point a1, Point a2) {
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
} 

//多边形面积  
double ConvexPolygonArea(Point* p, int n) {  
    double area = 0;  
    for(int i = 1; i < n-1; i++)  
        area += Cross(p[i] - p[0], p[i + 1] - p[0]);  
    return area / 2;  
}  




无注释纯净版微笑

struct Point {
	double x, y;
	Point(double x = 0, double y = 0) : x(x) , y(y) { }  
};

typedef Point Vector;  

Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 

bool operator < (const Point& a, const Point& b) {
	return a.x < b.x || (a.x == b.x && a.y < b.y);
} 

const double eps = 1e-10;
int dcmp(double x) {
	if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}

double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } 
double Length(Vector A) { return sqrt(Dot(A, A)); }		
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } 

double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }

Vector Rotate(Vector A, double rad) {
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
} 

Vector Normal(Vector A) {  
    double L = Length(A);  
    return Vector(-A.y/L, A.x/L);  
}

Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
	Vector u = P - Q;
	double t = Cross(w, u) / Cross(v, w);
	return P + v * t;
} 
 
double DistanceToLine(Point P, Point A, Point B) {  
    Vector v1 = B-A, v2 = P - A;  
    return fabs(Cross(v1,v2) / Length(v1)); 
}  

double DistanceToSegment(Point P, Point A, Point B) {  
    if(A==B) return Length(P-A);  
    Vector v1 = B - A, v2 = P - A, v3 = P - B;  
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);  
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);  
    else return fabs(Cross(v1, v2)) / Length(v1);  
}  

Point GetLineProjection(Point P, Point A, Point B) {
	Vector v = B - A;
	return A + v * ( Dot(v, P-A) / Dot(v, v) ); 
}  

bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
			c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
	return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} 

bool OnSegment(Point p, Point a1, Point a2) {
	return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
} 

double ConvexPolygonArea(Point* p, int n) {  
    double area = 0;  
    for(int i = 1; i < n-1; i++)  
        area += Cross(p[i] - p[0], p[i + 1] - p[0]);  
    return area / 2;  
}  




















评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值