这里总结一下二维几何基础知识!
常用定义:
//定义点的类型
struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x) , y(y) { } //构造函数,方便代码编写
};
typedef Point Vector; //从程序实现上,Vector只是Point的别名
//向量 + 向量 = 向量 ,点 + 向量 = 点
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
//点 - 点 = 向量
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
//向量 * 数 = 向量
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
//向量 / 数 = 向量
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
const double eps = 1e-10;
int dcmp(double x) {
if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}
bool operator == (const Point& a, const Point& b) {
return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
点积:
//点积
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求点积
double Length(Vector A) { return sqrt(Dot(A, A)); } //求向量长度
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之间的夹角
叉积:
//叉积
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉积
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根据叉积求三角形面积的两倍
旋转:
//旋转
Vector Rotate(Vector A, double rad) {//rad是弧度
return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
}
向量的单位法线:
//向量单位法向量,调用前请确保A不是零向量
Vector Normal(Vector A) {
double L = Length(A);
return Vector(-A.y/L, A.x/L);
}
二直线交点:
//二直线交点(参数式)
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
点到直线距离 :
//点到直线距离
double DistanceToLine(Point P, Point A, Point B) {
Vector v1 = B-A, v2 = P - A;
return fabs(Cross(v1,v2) / Length(v1)); //如果不取绝对值,得到的是有向距离
}
点到线段距离 :
//点到线段距离
double DistanceToSegment(Point P, Point A, Point B) {
if(A==B) return Length(P-A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
点在直线上的投影:
//点在直线上的投影
Point GetLineProjection(Point P, Point A, Point B) {
Vector v = B - A;
return A + v * ( Dot(v, P-A) / Dot(v, v) );
}
线段相交判定:
//线段相交判定
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
判断一个点是否在一条线段上:
//判断一个点是否在一条线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
}
多边形面积:
//多边形面积
double ConvexPolygonArea(Point* p, int n) {
double area = 0;
for(int i = 1; i < n-1; i++)
area += Cross(p[i] - p[0], p[i + 1] - p[0]);
return area / 2;
}
总结:
//定义点的类型
struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x) , y(y) { } //构造函数,方便代码编写
};
typedef Point Vector; //从程序实现上,Vector只是Point的别名
//向量 + 向量 = 向量 ,点 + 向量 = 点
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
//点 - 点 = 向量
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
//向量 * 数 = 向量
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
//向量 / 数 = 向量
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
const double eps = 1e-10;
int dcmp(double x) {
if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}
bool operator == (const Point& a, const Point& b) {
return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
//点积
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } //求点积
double Length(Vector A) { return sqrt(Dot(A, A)); } //求向量长度
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }//求向量之间的夹角
//叉积
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }//求叉积
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }//根据叉积求三角形面积的两倍
//旋转
Vector Rotate(Vector A, double rad) {//rad是弧度
return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
}
//向量单位法向量,调用前请确保A不是零向量
Vector Normal(Vector A) {
double L = Length(A);
return Vector(-A.y/L, A.x/L);
}
//二直线交点(参数式)
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
//点到直线距离
double DistanceToLine(Point P, Point A, Point B) {
Vector v1 = B-A, v2 = P - A;
return fabs(Cross(v1,v2) / Length(v1)); //如果不取绝对值,得到的是有向距离
}
//点到线段距离
double DistanceToSegment(Point P, Point A, Point B) {
if(A==B) return Length(P-A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
//点在直线上的投影
Point GetLineProjection(Point P, Point A, Point B) {
Vector v = B - A;
return A + v * ( Dot(v, P-A) / Dot(v, v) );
}
//线段相交判定
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
//判断一个点是否在一条线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
}
//多边形面积
double ConvexPolygonArea(Point* p, int n) {
double area = 0;
for(int i = 1; i < n-1; i++)
area += Cross(p[i] - p[0], p[i + 1] - p[0]);
return area / 2;
}
无注释纯净版:
struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x) , y(y) { }
};
typedef Point Vector;
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
const double eps = 1e-10;
int dcmp(double x) {
if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}
bool operator == (const Point& a, const Point& b) {
return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); }
Vector Rotate(Vector A, double rad) {
return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) );
}
Vector Normal(Vector A) {
double L = Length(A);
return Vector(-A.y/L, A.x/L);
}
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
double DistanceToLine(Point P, Point A, Point B) {
Vector v1 = B-A, v2 = P - A;
return fabs(Cross(v1,v2) / Length(v1));
}
double DistanceToSegment(Point P, Point A, Point B) {
if(A==B) return Length(P-A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
Point GetLineProjection(Point P, Point A, Point B) {
Vector v = B - A;
return A + v * ( Dot(v, P-A) / Dot(v, v) );
}
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
}
double ConvexPolygonArea(Point* p, int n) {
double area = 0;
for(int i = 1; i < n-1; i++)
area += Cross(p[i] - p[0], p[i + 1] - p[0]);
return area / 2;
}