蓝桥杯 数的潜能 (快速幂)

问题描述

将一个数N分为多个正整数之和,即N=a1+a2+a3+…+ak,定义M=a1a2a3*…*ak为N的潜能。
  给定N,求它的潜能M。
  由于M可能过大,只需求M对5218取模的余数。

输入格式

输入共一行,为一个正整数N。

输出格式

输出共一行,为N的潜能M对5218取模的余数。

样例输入

10

样例输出

36

数据规模和约定

1<=N<10^18

#include <iostream> 
#include <stdio.h>
#include <string>
#include <string.h>
#include <algorithm>
#include<ctype.h>
#include <vector>
#include <math.h>
#define maxn 1000
using namespace std;
/*
%运算 规则: 
(a + b) % p = (a % p + b % p) % p 

(a - b) % p = (a % p - b % p ) % p 

(a * b) % p = (a % p * b % p) % p 
*/ 
const  int m=5218;
typedef long long ll;
ll binaryPow(ll a, ll b, ll m){
	if(b == 0)
		return 1;
	else if(b&1==1)// 等同于 b&2==1  奇数 
		return a * binaryPow(a, b - 1, m) % m;
	else{
		ll num = binaryPow(a, b/2, m) % m;	//优化 
		return num * num % m;// 不直接写成return binaryPow(a, b/2, m) * binaryPow(a, b/2, m)
	}
	
}
int main()
{
    ll n,sum;
    cin>>n;
    if(n<5) sum=n;
    
    else{
       if(n%3==0) 
         sum=binaryPow(3, n/3, m)%m;
      else if(n%3==1)//10/3=3  10%3==1
    	 sum=4*binaryPow(3, n/3-1, m)%m;
      else //11/3==3 11%3==2 
         sum=2*binaryPow(3, n/3, m)%m;
   }
    cout<<sum;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值