背包问题
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
const int maxn=10010;
int n,vb;
int w[maxn],v[maxn];
int dp[maxn][maxn]={0};
//memset(dp,0,sizeof(dp));
int main(){
cin>>n>>vb;
for(int i=1;i<=n;i++){
cin>>w[i]>>v[i];
}
for(int i=1;i<=n;i++){
for(int j=1;j<=vb;j++){
if(w[i]>j) dp[i][j]=dp[i-1][j];// 当前背包容量装不进第i个物品,则价值等于
//前i-1个物品
else
dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);// 能装,需进行决策是否
//选择第i个物品
}
}
cout<<dp[n][vb];
return 0;
}
完全背包问题
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
#include <bits/stdc++.h>
using namespace std;
const int maxn=2010;
int n,vm;
int dp[maxn][maxn]={0},w[maxn],v[maxn];
int main(){
cin>>n>>vm;
for(int i=1;i<=n;i++){
cin>>w[i]>>v[i];
}
for(int i=1;i<=n;i++){
for(int j=1;j<=vm;j++){
for(int num=0;num*w[i]<=j;num++){
dp[i][j]=max(dp[i][j],dp[i-1][j-w[i]*num]+v[i]*num);
}
}
}
cout<<dp[n][vm];
return 0;
}
多重背包问题
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<vi,wi,si≤100
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
#include <bits/stdc++.h>
using namespace std;
const int maxn=2010;
int n,vm;
int dp[maxn][maxn]={0},w[maxn],v[maxn],f[maxn];
int main(){
cin>>n>>vm;
for(int i=1;i<=n;i++){
cin>>w[i]>>v[i]>>f[i];
}
for(int i=1;i<=n;i++){
for(int j=1;j<=vm;j++){
for(int num=0;num*w[i]<=j&&num<=f[i];num++){
dp[i][j]=max(dp[i][j],dp[i-1][j-w[i]*num]+v[i]*num);
}
}
}
cout<<dp[n][vm];
return 0;
}
分组背包问题
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
#include <bits/stdc++.h>
using namespace std;
#define maxn 130
int dp[maxn][maxn];
int w[maxn][maxn]={0},v[maxn][maxn]={0};
int main()
{
int n,vm;
cin>>n>>vm;
int s[maxn];
for(int i=1;i<=n;i++){
cin>>s[i];
for(int j=1;j<=s[i];j++){
cin>>v[i][j]>>w[i][j];
//体积 价值
}
}
for(int i=1;i<=n;i++)//n组
for(int j=1;j<=vm;j++){//体积增长
dp[i][j]=dp[i-1][j];//第i组取0个
for(int k=1;k<=s[i];k++){//取第i组第k个
if(j>=v[i][k]) //dp[i][j]=dp[i-1][j];
// else
dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][k]]+w[i][k]);
}
}
cout<<dp[n][vm];
return 0;
}
二维费用的背包问题(体积 重量两个约束条件)
有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。
每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。
输入格式
第一行三个整数,N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。
接下来有 N 行,每行三个整数 vi,mi,wi,用空格隔开,分别表示第 i 件物品的体积、重量和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
输入样例
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
输出样例:
8
#include <bits/stdc++.h>
using namespace std;
#define maxn 1010
int dp[maxn][maxn];
int w[maxn],v[maxn],m[maxn];
int main()
{
int n,vm,mm;
cin>>n>>vm>>mm;
for(int i=1;i<=n;i++){
cin>>v[i]>>m[i]>>w[i];
}
for(int i=1;i<=n;i++)
for(int j=mm;j>=m[i];j--)
for(int k=vm;k>=v[i];k--)
dp[j][k]=max(dp[j][k],dp[j-m[i]][k-v[i]]+w[i]);
cout<<dp[mm][vm];
return 0;
}