DP 背包问题 、完全背包问题、多重背包问题、二维费用的背包问题、分组背包问题

背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
const int maxn=10010;
int n,vb;
int w[maxn],v[maxn];
int dp[maxn][maxn]={0};
//memset(dp,0,sizeof(dp));
int main(){
	cin>>n>>vb;
	for(int i=1;i<=n;i++){
		cin>>w[i]>>v[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=vb;j++){
			if(w[i]>j) dp[i][j]=dp[i-1][j];// 当前背包容量装不进第i个物品,则价值等于
			//前i-1个物品
			else 
			dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);// 能装,需进行决策是否
			//选择第i个物品
			
		}
	}
	cout<<dp[n][vb];
	return 0;
	
}

完全背包问题

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

#include <bits/stdc++.h>
using namespace std;
const int maxn=2010;
int n,vm;
int dp[maxn][maxn]={0},w[maxn],v[maxn];
int main(){
	cin>>n>>vm;
	for(int i=1;i<=n;i++){
		cin>>w[i]>>v[i];
    	}
 for(int i=1;i<=n;i++){
 	 for(int j=1;j<=vm;j++){
       for(int num=0;num*w[i]<=j;num++){
 		 	dp[i][j]=max(dp[i][j],dp[i-1][j-w[i]*num]+v[i]*num);
 		  }	
 	 }
 }
 cout<<dp[n][vm];
 return 0;
}

多重背包问题

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值

数据范围
0<N,V≤100
0<vi,wi,si≤100
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

#include <bits/stdc++.h>
using namespace std;
const int maxn=2010;
int n,vm;
int dp[maxn][maxn]={0},w[maxn],v[maxn],f[maxn];
int main(){
	cin>>n>>vm;
	for(int i=1;i<=n;i++){
		cin>>w[i]>>v[i]>>f[i];
    	}
 for(int i=1;i<=n;i++){
 	 for(int j=1;j<=vm;j++){
       for(int num=0;num*w[i]<=j&&num<=f[i];num++){
 		 	dp[i][j]=max(dp[i][j],dp[i-1][j-w[i]*num]+v[i]*num);
 		  }	
 	 }
 }
 cout<<dp[n][vm];
 return 0;
}

分组背包问题

有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例
8

#include <bits/stdc++.h>
using namespace std;

#define maxn 130

int dp[maxn][maxn];
int w[maxn][maxn]={0},v[maxn][maxn]={0};
int main()
{
	int n,vm;
	cin>>n>>vm;
	int s[maxn];
	for(int i=1;i<=n;i++){
		cin>>s[i];
		for(int j=1;j<=s[i];j++){
			cin>>v[i][j]>>w[i][j];
			//体积 价值 
		}
	}

	for(int i=1;i<=n;i++)//n组 
		for(int j=1;j<=vm;j++){//体积增长
	  dp[i][j]=dp[i-1][j];//第i组取0个
		for(int k=1;k<=s[i];k++){//取第i组第k个
			if(j>=v[i][k])  //dp[i][j]=dp[i-1][j];
		//	else
			dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][k]]+w[i][k]);
		} 
			
		}
			
	cout<<dp[n][vm];
	return 0;
}

二维费用的背包问题(体积 重量两个约束条件)

有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。

每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。

输入格式
第一行三个整数,N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。

接下来有 N 行,每行三个整数 vi,mi,wi,用空格隔开,分别表示第 i 件物品的体积、重量和价值。

输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
输入样例
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
输出样例:
8


#include <bits/stdc++.h>
using namespace std;

#define maxn 1010

int dp[maxn][maxn];
int w[maxn],v[maxn],m[maxn];
int main()
{
	int n,vm,mm;
	cin>>n>>vm>>mm;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>m[i]>>w[i];
	}

	for(int i=1;i<=n;i++)
		for(int j=mm;j>=m[i];j--)
			for(int k=vm;k>=v[i];k--)
				
					dp[j][k]=max(dp[j][k],dp[j-m[i]][k-v[i]]+w[i]);
			
	cout<<dp[mm][vm];
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值