数论函数相关

数论函数相关

前言 :

由于本人脑子生锈严重 , 所以整理了这个东西拯救一下自己的数学
然而问题在于下文的很多问题我都没有完全理解完全没有理解 , 所以出锅概率极高99.99%
所以如果您在阅读过程中发现我出锅了的话 , 请联系我修锅
QQ: 2362687579 ,邮箱 : 2362687579@qq.com
验证的话就写"辣鸡dntkm出来挨打"就好了quq

积性函数

若对于函数\(f\)\(gcd(a,b)=1\)时,有\(f(a*b)=f(a)*f(b)\),则称\(f\)积性函数

特别的,若函数\(f\)无论\(gcd(a,b)\),都有\(f(a*b)=f(a)*f(b)\quad\)则称\(f\)完全积性函数

*注:目前常用的数论函数多为积性函数


Dirichlet卷积

定义两个数论函数的Dirichlet卷积为:
\[ (f * g)(n) = \sum_{d|n}f(d)*g(\frac{n}{d}) \]

满足:
交换律\((f*g)=(g*f)\)
结合律\((f*g)*h=f*(g*h)\)
分配律\((f+g)*h=f*h+g*h\)

*注:两个积性函数Dirichlet卷积仍为积性函数
大概把它当成长得比较奇怪的乘法就好


常见数论函数(积性)

莫比乌斯函数 \(\mu\)

\[\mu(d) \quad = \quad \begin{cases} 1\quad\qquad(d=1) \\ (-1)^{k}\quad(d=p_1p_2...p_k,\forall p_i \neq p_j) \\ 0 \quad\qquad (otherwise) \end{cases}\]

莫比乌斯函数的性质

\[\sum_{d|n}\mu(d) \quad = \quad [n=1] \qquad \quad \begin{cases}1\quad(n=1) \\0\quad(n\neq1)\end{cases} \\ \quad \\ 写为Dirichlet卷积形式为:\mu*I=\epsilon\\ \quad \\ 即:(\mu*I)(n)= \sum_{d|n}\mu(d)*I(\frac{n}{d})\\ = \sum_{d|n}\mu(d) = [n=1] = \epsilon(n) \\ 证 : \sum_{d|n} \mu(d) = \sum_{k=0}^{s} (-1)^k C_{s}^{k} = (1-1)^s = 0 \]

欧拉函数 \(\varphi\)

\[ \varphi(n) \quad = \quad \sum_{i=1}^{n} \quad [gcd(n,i) = 1]\]

欧拉函数的性质

\[\sum_{d|n}\varphi(d) \quad = \quad n \qquad \quad \\ \quad \\ 写为Dirichlet卷积形式为:\varphi*I=id\\ \quad \\ 即:(\varphi*I)(n)= \sum_{d|n}\varphi(d)*I(\frac{n}{d})\\ = \sum_{d|n}\varphi(d) = n = id(n) \\ 证 : \sum_{d|n} \varphi(d) = \sum_{d|n} \varphi(\frac{n}{d}) = \sum_{d|n} \sum_{d|i}^{\frac{n}{d}} [gcd(\frac{n}{d},\frac{i}{d})==1] \\ \quad = \sum_{d|n} \sum_{i=1}^{n} [gcd(n,i)==d] = n \\ 注 : 即枚举了gcd(n,i)的所有情况 , 那么每个i贡献为1 , 求和即为n \\ \]
\[ \sum_{d|n}d\varphi(\frac{n}{d}) \quad = \quad \sum_{i=1}^{n}gcd(i,n) \\ 写为Dirichlet卷积形式为:\varphi*id= \sum_{i=1}^{n}gcd(k,n) \\ \quad \\ 证: \sum_{d|n}d\varphi(\frac{n}{d}) \quad = \quad \sum_{d|n} d \sum_{i=1}^{\frac{n}{d}}[gcd(i,\frac{n}{d})=1]\\ = \sum_{d|n} d \sum_{i=1}^{\frac{n}{d}}[gcd(i*d,n)=d] = \sum_{i=1}^{n}gcd(i,n) \]

约数个数和函数 \(d\)

\[ d(n) \quad = \quad \sum_{d|n} \quad 1\]

约数和函数 \(\sigma\)

\[ \sigma(n) \quad = \quad \sum_{d|n} \quad d \]


常见数论函数(完全积性)

元函数 \(\epsilon\)

\(\quad \epsilon(n) \quad = \quad [n=1]\)

元函数的性质:\(\quad f*\epsilon(n)=f\)

恒等函数 \(I\)

\(\quad I(n) \quad = \quad 1\)

单位函数 \(id\)

\(\quad id(n) \quad = \quad n\)


莫比乌斯反演相关

莫比乌斯反演

\[ \begin{aligned} 设: &若有:数论函数 f,F \\ &已知: f=F*I=\sum_{d|n}F(d) \\ &则有: F=f*\mu=\sum_{d|n}\mu(d)*f(\frac{n}{d}) \\ &证明: f*\mu=F*(I*\mu)=F*\epsilon=F \\ \end{aligned}\]


杜教筛相关

杜教筛

待填坑 咕咕咕

时间复杂度

使用Eula筛处理前\(n^{\frac{2}{3}}\)项时复杂度最优
其复杂度为\(O(n^{\frac{2}{3}})\quad\)(请手写Hash表)


常用套路式

我只是看到过 , 不一定"常用"

\[ d(ij) = \sum_{x|i}\sum_{y|j} [gcd(x,y)=1]\]

\[ \sum_{k=1}^{n} d(k) = \sum_{k=1}^{n} \sum_{d|k} 1 = \sum_{d=1}^{n} \lfloor \frac{n}{i} \rfloor \]

\[ \sum_{x=1}^{n}\sum_{y=1}^{m} [gcd(i,j) = 1] = \sum_{d=1}^{min(n,m)} \mu(d) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \]

\[ [gcd(i,j)=1] = \sum_{d|i,d|j} \mu(d) \]

转载于:https://www.cnblogs.com/Pump-six/p/10523029.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值