算法笔记:数论基础

CW一月游记 Day1

好像混了一天..大概听懂了一丢丢...数论之前一直没有时间学 非常尴尬

顺便自己写一下ing ing...

基础讲解
  • 如果\(a\)除以非\(0\)整数\(b\)商为整数,且余数为0 -> 我们就说\(a\)能被\(b\)整除或者\(b\)能够整除\(a\) 记作 \(b|a\)
  • 整除的基本定理 [如果\(a|b\) \(a|c\) 那么 \(a|bc\)] [如果\(a|b\),那么对于所有整数\(c\),\(a|bc\)] [若\(a|b\),\(b|c\),则\(a|c\)]
  • 每一个正整数都可以唯一表示为素数(质数)的乘积
  • 如果两个数\(a\)\(b\)除以一个\(c\)的余数相等,说\(a\)\(b\)关于\(%c\)同余,记作\(a≡b(mod c)\) -> \(a≡b(mod c)\)成立的充要条件是\((a-b)=k*c\)
最大公约数和最小公倍数
  • 设两个不为\(0\)的正整数\(a\)\(b\),能使\(d|a\) && \(d|b\),那么\(d\)就是关于a与b的最大公约数,用\(gcd(a,b)\)表示,或者记为\((a,b)\)
  • 设两个不为\(0\)的正整数\(a\)\(b\),能使\(a|d\) && \(b|d\),那么\(d\)就是关于a与b的最小公倍数,用\(lcm(a,b)\)表示,或者记为\([a,b]\)
  • 定理:\(ab = gcd(a,b) * lcm(a,b)\)
  • 如果\(gcd(a,b) = 1\)\(a,b\)互质
最大公约数和最小公倍数的定理证明
  • 使用唯一分解定理,设
    $a = p_{1}^{a_{1}}p_{2}^{a_{2}}...p_{n}^{a_{n}} $
    $b = p_{1}^{b_{1}}p_{2}^{b_{2}}...p_{n}^{b_{n}} $
  • 那么就有
    \(lcm(a,b)=p_{1}^{max(a_{1},b_{1})}p_{2}^{max(a_{2},b_{2})}...p_{n}^{max(a_{n},b_{n})}\)
    \(gcd(a,b)=p_{1}^{min(a_{1},b_{1})}p_{2}^{min(a_{2},b_{2})}...p_{n}^{min(a_{n},b_{n})}\)
最大公约数的求解
  • 名称:欧几里得算法(辗转相除法)
  • 利用公式 \(gcd(a,b) = gcd(b,a mod b)\),时间复杂度\((logb)\)
  • 证明:
    \(r = a%b,r = a-kb\)
    \(d\)\(a,b\)的公约数,则\(d|a,d|b\),则\(d|r\)
    \(d\)\(b,a%b\)的公约数
    \(d\)\(b,a%b\)的公约数,同理可证\(d\)\(a,b\)的公约数
    \(gcd(a,b)=gcd(b,a%b)\)
  • 代码:(递归版)
int gcd(int x,int y)
{
    return b?gcd(y,x%y):x
}
质数筛法(\(2n\)写法 直接上代码)
void int_prime(int x)
{
    for (int i=2;i<=x;i++)
    {
        if(!flag[i]) pre[too++] = i;
        for (int j=0;j<tot && pre[j]<=m/i;j++)
        {
            flag[i*pre[j]] = 1;
            if(i % pre[j] == 0) break;
        }
    }
}
质数筛法例题

CodeForces 114E Double Happiness
hdu 1999 不可摸数

拓展欧几里得
  • 婓蜀定理:对于不完全为\(0\)的非负整数\(a,b\),\(gcd(a,b)\)表示\(a,b\)的最大公约数,必然存在整数对\(x,y\),使得\(gcd(a,b)=ax+bx\)
  • 欧几里得算法静止的状态是:\(a=gcd,b=0\)即当\(x=1,y=0\)时,这就是最终状态
拓展欧几里得证明
  • \(x,y\)\(x1,y1\)时两组解,且满足:
    \(a*x+b*y = gcd(a,b)\)
    \(b*x_{1}+(aModb)*y_{1} = gcd(b,aModb)\)
    \(a*x+b*y=b*x_{1}+(a%b)*y_{1}\)
    \(k=a/b,r=a%b\),则\(r=a-k*b\),代入上式得
    \(a*x+b*y=b*x_{1}+(a-a/b*b)*y_{1}\)
    \(a*x+b*y=a*y_{1}+b*(x_{1}-a/b*y_{1})\)
    \(x=y_{1}\)
    \(y_{1}=x_{1}-a/b*y_{1}\)
    通解\(x = x_{0}+(b/gcd)*t\)
    \(y=y_{0}-(a/gcd)*t\)
拓展欧几里得代码(放上代码和应用)
int exgcd(int a,int b,int &x,int &y)
{
    if(b == 0) { x = 1;y = 0;return a; }
    int temp = exgce(b,a%b,x,y);
    int t = x;x = y;y = t-a/b*y;
    return temp;
}
  • 应用:
  • 求解不定方程\(ax+by=c\)
  • 求解线性同余方程
  • 求解模的逆元
解不定式方程\(ax+by=c\)

将方程两遍同时除以\(gcd(a,b)\),设\(a' = a/gcd(a,b),b'=b/gcd(a,b),c'=c/gcd(a,b)\),则方程变形为a'x+b'y = c',因为a',b'互相质,所以\(gcd(a',b') = 1\)
由拓展欧几里得定理知一定的存在\(x_{0},y_{0}\)使得\(a'x_{0},b'y_{0}=1\)则可由\(exgcd\)求出\(x_{0},y_{0}\),将上式两边同时乘以\(gcd(a,b)\)得:
\(a'gcd(a,b)x_{0}+b'gcd(a,b)y_{0}=gcd(a,b) ==> ax_{0} + by_{0} = gcd(a,b) ==> ax_{0} + by_{0} = c/c'\),
所以方程的解\(x_{1} = x_{0} * c' = c/d*x_{0},y_{1} = y_{0} * c' = c/d * y_{0}\)为方程的一组解,则方程\(ax+bx=c\)的通解是
\(x = x_{1} + b/d*k = c/d*x_{0} + b/d*k\)
\(y = y_{1} - a/d*k = c/d*y_{0} - a/d*k\)

解模线性方程
  • 对于线性同余方程:\(ax≡m(Mod b)\)转化为\(ax+by=m\)则可以直接求解
  • \(a≡b(Mod c)\)成立的充要条件是\((a-b)=k*c\)
  • \((ax-m) = by\)
  • 如:\(5x≡2(Mod 3)\)转换为\(5x+3y=2\)
  • \(d=1,x_{0}=-1,y_{0}=2\)
  • 通解:\(x=-2+3t,y=4-5t\)
乘法逆元
  • 存在\(x\)使得\(ax ≡ 1(mod p)\) 则称\(x\)\(a\)关于\(p\)的乘法逆元
  • 定理:\(a\)关于\(p\)的乘法逆元存在的充要条件是\(gcd(a,p) = 1\)
  • 逆元有什么作用呢?
    当要求\((a/b)modp\)时,且\(a\)很大,我们就求\(b\)关于\(p\)的惩罚逆元\(x\),则有\((a/b)modp = (a*x)modp\)
  • 证明:
    根据\(b*x≡1(mod p)\)\(b*x=p*y+1\)
    \(x=(p*y+1)/b\)
    \(x\)代入\((a*x)modp\)得:
    \((a*(p*y+1)/b)mod p\)
    \(=((a*p*y)/b+a/b) mod p\)
    \(=[((a*p*y)/b)modp+(a/b)] modp\)
    \(=[(p*(a*y)/b) modp +(a/b)]mod p\)
    \(p*[(a*y)/b]mod p=0\)
求解逆元
  • \(5x≡1(mod3)\)逆元为\(2\)
  • \(ax≡1(modp)\)等价于\(ax+py=1\)
  • \(gcd(a,p)!=1\)的时候是没有解的,这也是\(a*x+b*y=c\)有解的充要条件:\(c%gcd(a,b)==0\)
  • 解有无数,如何求解最小正整数解?
  • \(x_{0}%p\)就是最小解,为什么?
  • 由通解知\(x = x_{0}+(p/gcd)*t\) 其中\(gcd=1\) 所以\(x=x_{0}+p*t\) 由于最小解为\((0,p)\)之间,所以\(x=x_{0}%p\)
  • 如果\(x_{0}\)为负数,让\(x_{0}\)\(abs(p)\),然后结果再加上\(abs(p)\)就行了
逆元例题

ZOJ 3609 Modular Inverse

观察归纳法 - 费马小定理
  • 假设\(p\)是质数,且\(gcd(a,p)=1\),那么\(a^{p-1}≡1(mod p)\)即:假如\(a\)是整数,\(p\)是质数,且\(a、b\)互质,那么\(a\)\((p-1)\)次方除以\(p\)的余数恒等于\(1\)
  • 应用:
    如果对于任意满足\(1≤b<p\)\(b\)下式都成立
    \(b^{p-1}≡1(modp)\)
    \(p\)必定是一个质数
    其实我们不必验证那么多,据说验证一次错误的概率为\(1/4\),所以一般验证\(10\)个质数就可以了
快速幂
  • 求解a^n%k
    直接上代码(二分)(\(logn\))
int mul(int x,int y,int k)
{
    int ans = 1;x = x % k;
    while(x)
    {
        if(x&1) ans = (ans * x) % k;
        x = (x * x) % k;
        x >>= 1;
    } return ans;
}
  • 如果该算法乘法溢出 我们会用到慢速乘法(乘法改成加法的形式)
long long mul(long long x,long long y,long long k)
{
    long long ans = 0;
    for (long long i=y;i;i>>=1)
    {
        if(i & 1) ans = (ans + x) % k;
        x = (x + x) % k;
    } return ans % k;
}

long long mull(long long x,long long y,long long k)
{
    long long ans = 1;
    for (long long i=y;i;i>>=1)
    {
        if(i & 1) ans = mul(ans,x) % k;
        x = mul(x,x) % k;
    } return ans % k;
}
欧拉函数
  • 对于正整数\(n\),欧拉函数是指少于或等于\(n\)的数中与\(n\)互质的数的数学
  • 例如\(φ(8)=4\),因为\(1,3,5,7\)均和\(8\)互质
  • 通式:
    \(φ(x)=x(1-1/p_{1})(1-1/p_{2})(1-1/p_{3})(1-1/p_{4})...(1-1/p_{n})\),其中\(p_{1},p_{2}...p_{n}\)\(x\)的所有质因数,\(x\)是不为\(0\)的整数 \(φ(1)=1\)(唯一和\(1\)互质的数(\(≤1\))就是\(1\)本身(注意:每种质因子只有一个)比如\(12 = 2*2*3\)那么\(φ(12) = 12 * (1-1/2) * (1-1/3) = 4\)
    \(n\)是质数\(p\)\(k\)次幂,\(φ(n)=p^{k}-p^{k-1}=(p-1)p^{k-1}\),因为除了\(p\)的倍数外,其他数都跟\(n\)互质
    \(n\)为正整数,以\(φ(n)\)表示不超过\(n\)且与\(n\)互素的正整数的个数,成为\(n\)的欧拉函数值,这里函数\(φ:N->N,n->φ(n)\)成为欧拉函数
  • \(n\)互质的所有数的和\(sum=n*[φ(n)/2]\)
  • 证明:容斥原理
    PewwPx.png
  • \(A∪B∪C =A+B+C - A∩B - B∩C - C∩A + A∩B∩C\)
  • 那么容斥的算法是:\(|U|\) - 不满足\(A_{1}\)的元素个数-不满足\(A_{2}\)的元素个数....+不满足\(A_{1}\)\(A_{2}\)的元素个数+....-不满足\(A_{1}、A_{2}\)\(A_{2}\)的元素个数-....

  • \(<1001\)\(1001\)互质的数一共有多少个?
  • 分析:由于\(1001 = 7*11*13\),所以就是找不到被\(7,11,13\)整除的数
  • 解答:\(1~1001\)中,有\(7\)的倍数\(1001/7=143(个)\)\(11\)的倍数\(1001/11 = 91\)(个),有\(13\)(个),有\(7*13=91\)的倍数\(1001/91 = 11\)(个),有\(11*13=143\)的倍数\(1001/143 = 7\)(个),有\(1001\)的倍数\(1\)
  • 由容斥原理知:在\(1~1001\)中,能被\(7\)\(11\)\(13\)整除的数有\((143+91+77) - (13+11+7) + 1 = 281\)(个),从而不能被\(7、11\)\(13\)整除的数有\(1001-281=720\)(个),也就是说,小于\(1001\)\(1001\)互质的数有\(720\)

  • \(p_{1},p_{2},p_{3}....p_{k}\)\(n\)的质因子
  • \(n\)不互质的数的个数为:
    \(n/p_{1}+n/p_{2}+...+n/p_{k}-n/(p_{1}*p_{2})-...-n/(pk-1*p_{k})-n/(p1*p2*p3)-...-n/(p_{k}-2*p_{k}-1*p_{k})-...+n/(p_{1}*p_{2}*...*p_{k})\)
  • 所以与\(n\)互质的数的个数为:
    $φ(n)

转载于:https://www.cnblogs.com/Steinway/p/9278105.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数字乡村和智慧农业的数字化转型是当前农业发展的新趋势,旨在通过应用数字技术,实现农业全流程的再造和全生命周期的管理服务。中国政府高度重视这一领域的发展,提出“数字中国”和“乡村振兴”战略,以提升国家治理能力,推动城乡融合发展。 数字乡村的建设面临乡村治理、基础设施、产业链条和公共服务等方面的问题,需要分阶段实施《数字乡村发展战略纲要》来解决。农业数字化转型的需求包括满足市民对优质农产品的需求、解决产销对接问题、形成优质优价机制、提高农业劳动力素质、打破信息孤岛、提高农业政策服务的精准度和有效性,以及解决农业融资难的问题。 数字乡村建设的关键在于构建“1+3+4+1”工程,即以新技术、新要素、新商业、新农民、新文化、新农村为核心,推进数据融合,强化农业大数据的汇集功能。数字农业大数据解决方案以农业数字底图和数据资源为基础,通过可视化监管,实现区域农业的全面数字化管理。 数字农业大数据架构基于大数据、区块链、GIS和物联网技术,构建农业大数据中心、农业物联网平台和农村综合服务指挥决策平台三大基础平台。农业大数据中心汇聚各类涉农信息资源和业务数据,支持大数据应用。信息采集系统覆盖市、县、乡、村多级,形成高效的农业大数据信息采集体系。 农业物联网平台包括环境监测系统、视频监控系统、预警预报系统和智能控制系统,通过收集和监测数据,实现对农业环境和生产过程的智能化管理。综合服务指挥决策平台利用数据分析和GIS技术,为农业决策提供支持。 数字乡村建设包括三大服务平台:治理服务平台、民生服务平台和产业服务平台。治理服务平台通过大数据和AI技术,实现乡村治理的数字化;民生服务平台利用互联网技术,提供各类民生服务;产业服务平台融合政企关系,支持农业产业发展。 数字乡村的应用场景广泛,包括农业生产过程、农产品流通、农业管理和农村社会服务。农业生产管理系统利用AIoT技术,实现农业生产的标准化和智能化。农产品智慧流通管理系统和溯源管理系统提高流通效率和产品追溯能力。智慧农业管理通过互联网+农业,提升农业管理的科学性和效率。农村社会服务则通过数字化手段,提高农村地区的公共服务水平。 总体而言,数字乡村和智慧农业的建设,不仅能够提升农业生产效率和管理水平,还能够促进农村地区的社会经济发展,实现城乡融合发展,是推动中国农业现代化的重要途径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值