【算法笔记】数论基础

拓展欧几里得|求逆元

逆元定义:如果一个线性同余方程 ax≡1 (mod b) ,则称x为a mod b 的逆元,记作a^−1

相当于求不定方程 ax+by=1 的解 (只要求gcd(a,b)=1,不要求b是质数)

ac代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll a,b,x,y;
ll ex_gcd(ll a,ll b,ll &x,ll &y) {
	if(b==0) {
		x=1,y=0;
		return a;
	}
	ll ans=ex_gcd(b,a%b,x,y);
	ll t=x;
	x=y;
	y=t-a/b*y;
	return ans;
}
ll inv(ll a,ll mod) {
	ll g=ex_gcd(a,mod,x,y);
	if(g!=1)return -1;//无解 
	return (x%mod+mod)%mod;
}
int main() {
	cin>>a>>b;
	cout<<inv(a,b);
}

递推求逆元

i\in \left ( 1,b \right )i 对 b 取模的逆元。

b=p * i +qp=\left \lfloor \frac{b}{i} \right \rfloorq= b mod i

于是有:

由于q一定小于i,所以可以递推。

ac代码:(简洁美观)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=3e6+10;
ll inv[N],a,b;
int main() {
	scanf("%lld%lld",&a,&b);
	inv[1]=1;
	for(int i=2; i<=a; i++){
		inv[i]=(b-(b/i)*inv[(b%i)]%b)%b;
	}
	for(int i=1;i<=a;i++){
		printf("%lld\n",inv[i]);
	}
}

中国剩余定理

给你n个如下的方程:

x\equiv r[i] \left ( mod \quad a[i] \right )

求解x

ac代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
ll n,a[N],r[N];

ll exgcd(ll a,ll b,ll &x,ll &y) {
	if(b==0) {
		x=1,y=0;
		return a;
	}
	ll ans=exgcd(b,a%b,x,y);
	ll t=x;
	x=y;
	y=t-a/b*y;
	return ans;
}
ll CRT(int k, ll* a, ll* r) {
  ll n = 1, ans = 0;
  for (int i = 1; i <= k; i++) n = n * r[i];
  for (int i = 1; i <= k; i++) {
    ll m = n / r[i], b, y;
    exgcd(m, r[i], b, y);  // b * m mod r[i] = 1
    ans = (ans + a[i] * m * b % n) % n;
  }
  return (ans % n + n) % n;
}

int main() {
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	cin>>n;
	for(int i=1; i<=n; i++){
		cin>>a[i]>>r[i];
	}
	cout<<CRT(n,r,a)<<'\n';
}

BSGS 

一种以O\left ( \sqrt{p} \right )的复杂度求解a^{x}\equiv n\left ( mod\quad p\right )的方法

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e8+10;
const int mod = 1e9+7;
ll p,b,n;

ll ksm(ll a,ll n){
	ll ans=1;
	while(n){
		if(n&1)ans=ans*a%p;
		a=a*a%p;
		n>>=1;
	}
	return ans;
}
ll BSGS(ll a,ll b,ll p){
	b=(b%p+p)%p;
	if(b==1||p==1)return 0;
	ll n=sqrt(p)+1;
	unordered_map<ll,ll>m;
	ll inva=ksm(ksm(a,n-1),p-2)*b%p;
	for(ll i=n-1;~i;--i){
		m[inva]=i;
		inva=inva*a%p;
	}
	ll ta=1,powa=ksm(a,n);
	for(ll k=0;k<=p;k+=n){
		if(m.count(ta))return k+m[ta];
		ta=ta*powa%p;
	}
	return -1;
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin>>p>>b>>n;
	ll ans=BSGS(b,n,p);
	if(ans==-1)cout<<"no solution";
	else cout<<ans;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值