线性求逆元推导

本篇介绍线性求逆元的推导过程


·对于一个质数\(P\),我们需要求出\(1-N\)\(mod\ P\)意义下的逆元,如何使用线性的方法求其逆元呢?
·首先,我们设\(t=P/i,k=P\%i\);
·对于\(i*t+k≡0 \pmod{P}\),我们可以做出如下推导:
·等式两边同时除以\(i*k\),我们可以得到新式子\(\frac{t}{k}+\frac{1}{i}≡0 \pmod{P}\);
·从而得到:\(\frac{P}{i}*inv[P\%i]+inv[i]≡0 \pmod{P}\);
·最后得到\(inv[i]=(-\frac{P}{i}+P)*inv[P\%i]%P\);
\(code:\)
#include<stdio.h>
#include<algorithm>
#define ll long long
using namespace std;

const int maxn=(1e7*2)+2;
ll n,p,inv[maxn];
inline ll add(ll a,ll b){return a+b<p?a+b:a+b-p;}
inline ll mul(ll a,ll b){return a*b<p?a*b:a*b%p;}

int main()
{
    scanf("%lld%lld",&n,&p);inv[1]=1;
    for(int i=2;i<=n;i++) inv[i]=mul(add(-p/i,p),inv[p%i]);
}

转载于:https://www.cnblogs.com/KatouKatou/p/9821642.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值