归并排序

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/baodream/article/details/80355778

归并排序思想:

开始以间隔为1的进行归并,也就是说,第一个元素跟第二个进行归并。第三个与第四个进行归并;
然后,再以间隔为2的进行归并,1-4进行归并,5-8进行归并;

再以2*2的间隔,同理,知道2*k超过数组长度为止。

模板:

//归并排序
/*
时间复杂度:O(N*log(N))
空间复杂度:O(N)
稳定性:稳定
*/

int a[N];     //需要排序的数组
int temp[N];   //中间合并用数组

void MergeArray(int l,int r,int mid) //合并两序列
{
    int i=l,n=mid;    //左子序列指针
    int j=mid+1,m=r;  //右子序列指针
    int k=0;          //temp数组指针
    while(i<=n&&j<=m)
    {
        if(a[i]<=a[j])
            temp[k++] = a[i++];
        else
        {
            temp[k++] = a[j++];
            /*
            //用作求逆序对g_nCount初始化为0,代表数组逆序对数量
            //a[j]和前面每一个数都能组成逆序数对
            g_nCount+=n-i+1;
            */
        }
            
    }
    while(i<=n)
        temp[k++] = a[i++];
    while(j<=m)
        temp[k++] = a[j++];
    for(int t=0;t<k;t++)   //拷贝回去
        a[l+t] = temp[t];
}

void Merge_sort(int l,int r) //归并排序递归写法,0~n-1的数组,则l=0,r=n-1
{
    if(l<r)
    {
        int mid = (l+r)>>1;
        Merge_sort(l,mid);   //左子序列排序
        Merge_sort(mid+1,r); //右子序列有序
        MergeArray(l,r,mid); //两边合并
    }
}

/*void Merge_sort(int n) //归并排序非递归写法,n为数组大小,数组0~n-1
{
    int l,r,mid;
    for(int len=1;len<n;len*=2)  //枚举归并长度
    {
        l=0;
        while(l+len<n)
        {
            mid=l+len-1;
            r=mid+len;
            if(r>n-1)   //右区间不够
                r=n-1;
            MergeArray(l,r,mid); //合并左右区间
            l=r+1;  //下一次归并的起始位置
        }
    }
}*/

 

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页