贴一份扩展KMP模板:
//扩展KMP可求问题:给出一个长为N的字符串S,再给出一个长为M的字符串T
//求S的所有后缀中和T的最长公共前缀
//假设s为文本串(长度为n),T为模式串(长度为m)
char s[N],T[N];
int n,m;
int Next[N]; //Next[i]代表T[i~m-1]与T[0~m-1]最长公共前缀
int ex[N]; //extend数组,代表s[i~n-1]与T[0~m-1]最长公共前缀
//注意到,如果有一个位置extend[i]=m,则表示T在S中出现,而且是在位置i出现,这就是标准的KMP问题
void Get_Next(){
Next[0] = m;
int j=0;
while(j+1<m&&T[j]==T[j+1]) //计算Next[1]
j++;
Next[1] = j;
int po=1; //设po为答案伸得最远的后缀的下标
for(int i=2;i<m;i++){
int p = Next[po] + po - 1; //已匹配最大位置
int L = Next[i-po]; //前缀长度
if(i+L<p+1)
Next[i] = L;
else{
j = max(0,p-i+1);
while(i+j<m && T[i+j] == T[j])
j++;
Next[i] = j;
po = i;
}
}
}
void EX_KMP(){
Get_Next();
int j=0;
while(j<n&&j<m&&s[j]==T[j])
j++;
ex[0] = j;
int po = 0;
for(int i=1;i<n;i++){
int p = ex[po]+po-1;
int L = Next[i-po];
if(i+L<p+1)
ex[i] = L;
else{
j = max(0,p-i+1);
while(i+j<n&&j<m&&s[i+j]==T[j])
j++;
ex[i] = j;
po = i;
}
}
}