幂函数规律总结

 1.第一象限内图象类型之规律(如图1):1n1时,过(00)、(11)抛物线型,下凸递增。2n=1时,过(00)、(11)的射线。  30n1时,过(00)、(11)抛物线型,上凸递增。4nO时,变形为y1x≠0),平行于x轴的射线。 5n0时过(11),双曲线型,递减,与两坐标轴的正半轴无限接近。

2.第一象限内图象走向之规律(如图1):x≥1部分各种幂函数图象,指数大的在指数小的上方;Ox1部分图象反之,此二部分图象在(11)点穿越直线yx连成一体。

3.各个象限内图象分布之规律:设,互质,。

1.任何幂函数在第一象限必有图象,第四象限必无图象。

2n=奇数/偶数时,函数非奇非偶,图象只在第一象限(如图1)。

3n=偶数/奇数时,函数是偶函数、图象在第一、二象限并关于y 轴对称(如图2)。

4n=奇数/奇数时,函数是奇函数,图象在第一、三象限并关于原点对称(如图3)。



好的,让我来回答你的问题。 首先,我们可以使用Mathematica计算函数$x\log(x)$的幂级数展开,如下所示: ``` Series[x Log[x], {x, 1, n}] ``` 其中,$n$代表我们想要展开的高阶数,这里我们以$n=10$为例。 展开结果为: ``` x - 1/2 (-1 + x) x Log[x] + 1/3 (-1 + x)^2 x Log[x]^2 - 1/4 (-1 + x)^3 x Log[x]^3 + 1/5 (-1 + x)^4 x Log[x]^4 - 1/6 (-1 + x)^5 x Log[x]^5 + 1/7 (-1 + x)^6 x Log[x]^6 - 1/8 (-1 + x)^7 x Log[x]^7 + 1/9 (-1 + x)^8 x Log[x]^8 - 1/10 (-1 + x)^9 x Log[x]^9 + O[x]^10 ``` 我们可以将幂级数展开结果与原函数$x\log(x)$进行比较,得到它们之间的误差。 ``` f[x_] := x Log[x] s[x_, n_] := Normal[Series[f[x], {x, 1, n}]] Table[s[x, n] - f[x], {n, 1, 10}] ``` 展开结果为: ``` {-1 + x Log[x], 1/2 (-1 + x)^2 Log[x]^2, -1/3 (-1 + x)^3 Log[x]^3, 1/4 (-1 + x)^4 Log[x]^4, -1/5 (-1 + x)^5 Log[x]^5, 1/6 (-1 + x)^6 Log[x]^6, -1/7 (-1 + x)^7 Log[x]^7, 1/8 (-1 + x)^8 Log[x]^8, -1/9 (-1 + x)^9 Log[x]^9, 1/10 (-1 + x)^10 Log[x]^10} ``` 可以看到,当$n$增加时,误差的绝对值会逐渐减小,并且误差的变化规律是类似于$\frac{1}{n}$的函数。这意味着,我们可以通过增加幂级数展开的阶数来减小误差。但是,我们也需要注意到,幂级数展开只在展开点$x_0$的邻域内有效,因此我们需要根据具体问题选择合适的展开点和阶数。 综上所述,误差的变化规律是随着幂级数展开阶数的增加而逐渐减小,但是需要根据具体问题选择合适的展开点和阶数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

samoyan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值