动态规划(2)

  1. House Robber
    在这里插入图片描述
    (1)递归法(得到二叉树结构)
    在这里插入图片描述
#include <iostream>
#include<vector>

using namespace std;
class Solution{
private:
 int tryrob(vector<int> &nums, index) //index从哪个房子开始
 {
 	int sum=0;
 	int n = nums.size();
 	if(index>=n) return 0;
 	for(int i=0; i<nums.size(); i++)
 	{
 	   sum = max(sum, nums[i]+tryrob(nums, i + 2));	
 	}
 	return sum;
 }
public:
 int rob(vector<int> &nums){ //动态数组nums中存各个房子的财富值
    return tryrob(nums,0);
  }
};
int main() {
	return 0;
}

(2)记忆化搜索方法

#include <iostream>
#include<vector>

using namespace std;
class Solution{
private:
 vector<int> memo;  //memo[i] 偷窃从编号i开始的财富最大值
 int tryrob(vector<int> &nums, index) //index从哪个房子开始
 {
 	int sum=0;
 	int n = nums.size();
 	if(index>=n) return 0;
 	if(memo[index] != -1) return memo[index];
 		for(int i=index; i<nums.size(); i++)
 	   {
 	        sum = max(sum, nums[i]+tryrob(nums, i + 2));	
 	   }
 	   memo[i] = sum;
 	return memo[i];
 }
public:
 int rob(vector<int> &nums){ //动态数组nums中存各个房子的财富值
    memo = vector<int> (nums.size(), -1)
    return tryrob(nums,0);
  }
};
int main() {
	return 0;
}

(3)动态规划,自底向上

#include <iostream>
#include<vector>

using namespace std;
class Solution{
public:
 int rob(vector<int> &nums){ //动态数组nums中存各个房子的财富值
    int n = nums.size(); 
    vector<int> memo(n, -1);
    if(n==0) return 0;  
    //自底向上,先计算从n-1开始偷,再逐步递推到0
    memo[n-1] = nums[n-1];
    for(int i=n-2; i>=0; i--)
    {
    	//memo[i]
    	for(int j=i; j<=n-1; j++)
    	{
    		memo[i] = max (memo[i], nums[j]+(j+2<n ? memo[j+2] : 0));
    	}
    }
    return memo[0];
  }
};
int main() {
	return 0;
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值