第1章
网络传播模型及其分类
一种随机传播模型的定义:包括
- 图结构
- 每个结点的状态空间
- 传播概率空间
- 传播的时间序列
传播概率空间对应着模型在传播过程的所有的随机性可能。
第2章
2.1 递进型传播模型
其实任意种子集合的影响力扩展度就是种子集合激活
2.2 独立级联模型
定义:种子集合开始传播,会对它的每一个邻居都尝试激活一次,到某个时刻,没有邻居被激活,传播结束。
组成部分有:
- 1 有向图
- 2 每个节点状态空间
- 3 随机活跃边图组成的传播概率空间
- 4 离散时间序列
他与SI和SIR模型唯一的区别就在于其每个时刻,都只尝试一次,到了指定时刻,没有传播就传播结束了。所以等价于采样活跃边图的概念。而SI和SIR模型就不一定了,它的传播边就是那种只要时间足够久,就可以一直传播,持续传播下去。
2.3 线性阙值模型
定义:随机赋予每个节点一个阙值,一旦周边的节点达到某个阙值。就被接受信息了。组成部分,只有第3个的活跃边图的定义方式不一致,其他都是一样的。
它同样也有基于采样活跃边图的概念,但是其活跃边图的概率与独立级联模型的不太一样而已。
2.6 传播模型的次模性
在通用的阙值模型上,很多图覆盖问题都满足次模特性,因为覆盖的重叠现象会造成边界效用递减。但是单调性绝非必要,需要独立证明其存在。比如集合覆盖的f(s)=|S|,就是单调的。
2.7 非渐近模型也是次模的
参考本书的第2章关于次模性介绍的部分。
第3章
3.1 精确影响力扩展度计算的难解性
计数问题可以用比NP难算法更好的方法刻画。
对影响力扩展度的计算实质上是一类#p问题,这类问题因为其计数复杂度。#p问题需要回答问题实例的个数有多少个,一个#p-难的问题肯定是NP-难得,因为可以从任何一个#P完全多项式规约到这个#p-难问题。
定理1: 独立级联模型和线性阙值模型中计算影响力扩展度都是#p-难的。
对于独立级联模型,我们将一个#p-完全的s-t可连通性计数问题归约到一个节点在独立级联模型下影响力扩展度的问题。
对于线性阙值模型,我们将一个计算简单路径数目的问题归约到它。
基础知识
归约过程大致是:
1 构建一个图G‘
2 给定一个图和一个种子集合,计算该种子集合的目标函数写为
P是S到其他节点所有的路径,W(e)是边权重。计算P就是#p难的了,当图大的时候。
3 如果可以计算该式的话,就可以解决计数一个图的所有简单路径计数问题。因为它的计算过程包含后者那他自然就是#p-难的。
由于是#p难的,所以我们可以采用蒙特卡洛方法去近似计算其影响值,借助某个界来做。
定理2:给定切比雪夫不等式,然后得到蒙特卡洛准确度结论。
也就是算法运行多少次MC可以获取到在误差y内的近似值,如果能够得到该近似值,就可以以该近似值输入到近似算法中,进而得到其变坏的近似比。
第4章
理解影响力最大化问题以及几个重要定理的证明
1 影响力最大化问题在IC和LT模型上NP难。
在LT模型上,将最大覆盖问题规约到影响力最大化问题。
在IC模型上,将节点覆盖问题规约到影响力最大化问题。
2 利用次模函数可以得到1-1/e的近似比。
公式推导利用次模性质得到。
2.1 如果使用近似计算扩展函数会得到一个比较差的近似比
条件,需要某些参数在其中,并且保证自己的近似时是由误差在y内的才可以。
如何利用MCMC近似计算某个种子集合的影响力,得到1-1/e-
的近似比?
证明过程大概过程:
1 首先证明利用MCMC可以以一定确定概率估计某个种子集合的影响力在一个误差内。
2 以这个误差为条件,可以将其带入到影响力最大化问题的近似比证明过程,得到1-1/e-
的近似比。
证明过程:
1 首先证明利用MCMC运行一次次数以一定确定概率估计某个种子集合的影响力在一个误差内。
1 先证明(s)近似是
(s)真实的无偏估计。(参考《概率导论》的经典参数估计)
2 然后套用《随机算法及其概率分析》中的CHernoff界。
得到运行次数MCMC大于某个界,就以一定概率获得了种子集合影响力一定误差的值。
而如果能保证2的条件,就可以将其加入到影响力最大化的证明公式中,推导出1-1/e-的近似比。
3 该近似比是没有比1-1/e更好的近似比的。至少对于独立级联模型,不可能找到1-1/e的近似比的。
因为如果可以找到,那就可构建提高最大覆盖问题的更好近似比算法,但是已经证明最大覆盖问题是没有更好近似比的。所以假设不成立,自然也就不可能找到更好的。
3 如果没有准确的节点影响力评估,那么通过对扩散函数的近似估计,可以得到1-1/e-C的近似比。C就是近似导致的。
类似于2 的过程,但是加入了参数。
4 可扩展的影响力最大化算法
第5章 单实体下其他影响力传播模型和优化问题
5.1 带传播延迟的模型和受限时间的影响力最大化