Prim和Kruscal最小生成树算法

本文解析了Prim算法和Kruskal算法在求解最小生成树问题中的步骤,Prim从顶点出发,每次选择代价最低的边连接未加入的节点;而Kruskal从边开始,通过排序并逐步添加边构建树,直到所有节点连通。通过实例展示了这两种算法的代码实现和运行结果。
摘要由CSDN通过智能技术生成

最小生成树

Prim算法

Prim算法 主要是从结点出发,需要用到2个数组

path数组保存结点从哪个结点过来

lowcost保存起始结点到其他结点的代价,可以直接读邻接矩阵的内容

path = {-1, 1, 1, 0, 0}
lowcost = {0, 10, 5, ∞, ∞}

显然我们要遍历n-1轮,每1轮确定1个结点

第1轮遍历 找到lowcost中最小不为0的值,数组下标代表顶点

确定顶点后,看下跟他相连的结点的代价,跟原来的代价,谁大谁小,小的替换大的,修改代价后把path对应的点改成当前顶点

知道n-1轮结束

此时path 路径确定

lowcost 都是最小值

Kruscal算法

Kruscal算法 从边开始

typedef struct Edge{
int begin;
int end;
int weight;
}Edge;

把所有的边按权值排序

用到一个数组parent,用来判断是否产生回路

依次选用边,parent[3] = 4 表示顶点3 和 顶点4 已经在生成树集合中,每次都是占用新的位置(通过Find函数找到新位置和新的顶点)
当所有顶点都在集合中时,任意2个点通过Find函数找到的值都相同,此时说明再连已经成环形

直到所有边遍历完

Prim和Kruscal最小生成树代码

//
//  seq_depth_graph.cpp
//  Snake2021
//
//  Created by Charming on 2021/10/10.
//

#include <stdio.h>

#include <iostream>
#include <stdlib.h>
#include <time.h>

using namespace std;


#define MAX_NUM 20                   //顶点的最大个数


typedef struct {
    int Vex[MAX_NUM];
    int Edge[MAX_NUM][MAX_NUM];
    int vexnum;
    int edgenum;//边
}Graph;


void MiniSpanTreePrim(Graph g){
    int path[6];//从哪个点过来的
    int lowcost[6];//到每个点的最低花费
    lowcost[1] = 0;
    path[1] = -1;
    cout << "min vertex :" << 1 << " path:" << path[1] << endl;
    for (int i = 2; i<=g.vexnum; i++) {
        lowcost[i] = g.Edge[1][i];//目标顶点1 到其他顶点的权值
        path[i] = 1;
    }
    for (int i = 2; i<=g.vexnum; i++) {
        int min = 999;
        int j = 2, k = 0;
        while (j<=g.vexnum) {
            if (lowcost[j]!=0 && lowcost[j]<min) {
                min = lowcost[j];
                k = j;
            }
            j++;
        }
        lowcost[k] = 0;//标记已访问
        cout << "vertex :" << k << " path:" << path[k] << endl;
        for (j = 2; j<=g.vexnum; j++) {
//            cout << "lowcost" << lowcost[j] << " " << g.Edge[k][j] <<endl;
            if (lowcost[j]>g.Edge[k][j]) {
                lowcost[j] = g.Edge[k][j];
                path[j] = k;
            }
        }
    }
}

typedef struct Edge{
    int begin;
    int end;
    int weight;
}Edge;
int Find(int *parent, int f);
void MiniSpanTreeKruskal(Graph g){
    Edge edges[10];
    int k = 1;
    for (int i = 1; i<10; i++) {
        edges[i].begin = 0;
        edges[i].end = 0;
        edges[i].weight = 0;
    }
    
    for (int i = 1; i<=g.vexnum; i++) {
        int j = i + 1;//无向图 只看上三角
        while (j<=g.vexnum) {
            if (g.Edge[i][j]!=0 && g.Edge[i][j]<999) {
                edges[k].begin = i;
                edges[k].end = j;
                edges[k].weight = g.Edge[i][j];
                k++;
            }
            j++;
        }
        
    }
    int begin,end,weight;
    for (int i = 1; i<g.edgenum; i++) {
        for (int j= i+1; j<=g.edgenum; j++) {
            if (edges[i].weight>edges[j].weight) {
                begin = edges[i].begin;
                end = edges[i].end;
                weight = edges[i].weight;
                
                edges[i].begin = edges[j].begin;
                edges[i].end = edges[j].end;
                edges[i].weight = edges[j].weight;
                
                edges[j].begin = begin;
                edges[j].end = end;
                edges[j].weight = weight;
            }
            
        }
    }
//    cout << "sort after:" << endl;
//    for (int i = 1; i<=g.vexnum; i++) {
//        cout << "start-" << edges[i].begin << ";end-" << edges[i].end << ";weight-" << edges[i].weight << endl;
//
//    }
    cout << "result:" << endl;
    int parent[10];
    for (int i = 1; i<10; i++) {
        parent[i] = 0;
    }
    int n,m;
    for (int i = 1; i<=g.edgenum; i++) {
        //找出头和尾分别权值最小的顶点
        n = Find(parent, edges[i].begin);
        m = Find(parent, edges[i].end);
        if (n!=m) {
            parent[n] = m;
            cout << "start-" << edges[i].begin << ";end-" << edges[i].end << ";weight-" << edges[i].weight << endl;
        }
    }
}

// 找到没有被占用的位置
int Find(int *parent, int f){
    while (parent[f]>0) {
        f = parent[f];
    }
    return f;
}
int main(){
    std::cout << "welcome, to my world!" << std::endl;
    Graph graph;
    for (int i=1; i<=5; i++) {
        graph.Vex[i] = i;
    }
    for (int i=1; i<=5; i++) {
        for (int j = 1; j<=5; j++) {
            if (i==j) {
                graph.Edge[i][j] = 999;//很大的数,表示不可到达
            }else{
                graph.Edge[i][j] = 999;
            }
            
        }
    }
    graph.Edge[1][2] = 10;
    graph.Edge[1][3] = 5;
    graph.Edge[2][4] = 2;
    graph.Edge[2][5] = 3;
    graph.Edge[4][3] = 1;
    
    graph.Edge[2][1] = 10;
    graph.Edge[3][1] = 5;
    graph.Edge[4][2] = 2;
    graph.Edge[5][2] = 3;
    graph.Edge[3][4] = 1;
    graph.vexnum = 5;
    graph.edgenum = 5;
 
    cout << "size of:" << sizeof(graph) <<endl;
    cout << "MiniSpanTreePrim:" << endl;
    MiniSpanTreePrim(graph);
    
    cout << "MiniSpanTreeKruskal:" << endl;
    MiniSpanTreeKruskal(graph);
    return 0;
}

输出

welcome, to my world!
size of:1688
MiniSpanTreePrim:
min vertex :1 path:-1
vertex :3 path:1
vertex :4 path:3
vertex :2 path:4
vertex :5 path:2
MiniSpanTreeKruskal:
result:
start-3;end-4;weight-1
start-2;end-4;weight-2
start-2;end-5;weight-3
start-1;end-3;weight-5
Program ended with exit code: 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值