声学与人工智能
文章平均质量分 94
一摩尔自由
AI之路
展开
-
语音识别之前端处理及相关算法
前言 语音识别是模式识别的一个分支,又从属于信号处理科学领域,同时与语音学、语言学、数理统计及神经生物学等学科有非常密切的关系。语音识别的目的就是让机器“听懂”人类口述的语言,包括了两方面的含义:其一是逐字逐句听懂非转化成书面语言文字;其二是对口述语言中所包含的要求或询问加以理解,做出正确响应,而不拘泥于所有词的正确转换。 自动语音识别技术有三个基本原理:首先语音信号中的语言信息是按...原创 2018-06-05 19:52:58 · 18169 阅读 · 0 评论 -
如何成为一名全栈语音识别工程师?
语音识别基础知识【数学与统计学】数学是所有学科的基础,其中的高等数学、数理方程、泛函分析等课程是必要的基础知识,概率论与数理统计也是语音识别的基础学科。【声学与语言学】声学基础、理论声学、声学测量等是声学方面的基础课程,有助于了解更多声学领域的知识。语言学概论、语言哲学、语义最小论与语用多元论、语法化与语义图等知识对于理解语言模型和语音交互UI设计非常有帮助。【计算机学】信号系统、数字信号处理、语...转载 2018-05-30 14:54:39 · 877 阅读 · 0 评论 -
语音识别资料(一)
从声学模型算法总结 2016 年语音识别的重大进步 http://blog.csdn.net/charleslei/article/details/58142000AI 实践者需要掌握的10大深度学习方法:反向传播、迁移学习、梯度下降…… https://yq.aliyun.com/articles/257432?spm=5176.100240.searchblog.169.u7kwwl语音识别...原创 2018-06-08 14:37:48 · 625 阅读 · 0 评论 -
python音频处理用到的操作
作者:桂。链接:http://www.cnblogs.com/xingshansi/p/6799994.html 前言本文主要记录python下音频常用的操作,以.wav格式文件为例。其实网上有很多现成的音频工具包,如果仅仅调用,工具包是更方便的。更多pyton下的操作可以参考: 用python做科学计算1、批量读取.wav文件名:123456import os filepath = "./dat...转载 2018-07-11 10:27:41 · 9267 阅读 · 3 评论 -
音频特征提取——常用音频特征
作者:桂。链接:http://www.cnblogs.com/xingshansi/p/6815217.html 前言主要总结一下常用的音频特征,并给出具体的理论分析及代码。一、过零率过零率的表达式为:其中N为一帧的长度,n为对应的帧数,按帧处理。理论分析:过零率体现的是信号过零点的次数,体现的是频率特性。因为需要过零点,所以信号处理之前需要中心化处理。code(zcr1即为过零率):123456...转载 2018-07-11 10:37:13 · 19929 阅读 · 5 评论 -
七种滤波方法的matlab实现和测试
创建两个混合信号,便于更好测试滤波器效果。同时用七中滤波方法测试。混合信号Mix_Signal_1 = 信号Signal_Original_1+白噪声。混合信号Mix_Signal_2 = 信号Signal_Original_2+白噪声。1.巴特沃斯低通滤波器去噪巴特沃斯滤波器适合用于信号和噪声没有重叠的情况下。下图是巴特沃斯对两个信号的滤波效果。从图上可以看出巴特沃斯低通滤波器对信号一的滤波效果...转载 2018-07-04 21:15:26 · 16965 阅读 · 2 评论