深度学习
深度学习专栏
一摩尔自由
AI之路
展开
-
自动将代码升级到TensorFlow 2代码——tf_upgrade_v2.py
TensorFlow升级到2.0后给出了代码自动升级的脚本和使用方法,详情可见官网TensorFlow官网:https://www.tensorflow.org/guide/upgrade代码链接:tf_upgrade_v2.py# Copyright 2018 The TensorFlow Authors. All Rights Reserved.## Licensed u...原创 2019-10-09 16:24:03 · 6499 阅读 · 2 评论 -
基于yoloV3进行单目标检测
一、前言之前的一篇文章在用SSD进行行人检测是重新对coco数据集中的人标签进行训练,但是精度和速度都比yolov3差一点,应该是训练的原因,这里将基于yolov3tennsorflow版实现单目标检测(Keras版可同理进行更改)。二、准备准备将yolov3目标检测项目下载下来,进入项目的core文件夹将utils.py文件中的draw_bbox函数更改成下面这样def dra...原创 2019-09-29 20:33:37 · 2919 阅读 · 2 评论 -
基于SSD实现行人检测
姿态识别过程需要对人体进行检测,然后再对姿态进行识别,下面是基于SSD进行的单目标检测# -*- coding: utf-8 -*-# @FileName: ssd_body_detect.py#### 主要想引入之前训练的单人体检测模型import numpy as npimport osimport tensorflow as tfimport cv2os.envir...原创 2019-09-29 17:31:34 · 2458 阅读 · 2 评论 -
查看显卡运行程序的详细信息
nvidia-smi提供了显卡使用相关的一系列信息,但是其在最为关键的命令信息却十分简洁,当有多块卡时,清一色的python或者caffe很难分清哪个是谁起的,此外有的程序占用多张卡跑,重复的显示也没有必要。# coding=utf-8import osimport sysimport reimport pwdimport timeimport psutilimport sub...转载 2019-09-27 14:12:23 · 1083 阅读 · 0 评论 -
python实现对检测目标进行非最大抑制
一、前言在构建目标检测系统时有一个无法绕开的问题——边界框重叠(实际上这是个好兆头,至少代表你的检测系统运行良好,所以甚至可以不将其称作“问题”)。为了去除重叠的边界框(指向同一物体的),我们可以对Mean-Shift算法应用非最大抑制。这个在imutils.object_detection也可以直接调用from imutils.object_detection import non...原创 2019-09-27 12:00:06 · 1549 阅读 · 0 评论 -
实时人脸性别和年龄识别
age-gender-estimation项目给出了使用keras进行性别和年龄识别的完整流程数据采用的数据集为imdb-wiki,这是一个包含20,284名人的460,723张以及维基百科上imdb的62,328张共计523,051 张人脸图像的数据集,是目前开源的数据集中量级最大的,它给出了图像中人物的性别和出生时间、照片的拍摄时间等信息。原始的图片很大,分成了9个部分共计100多G...原创 2019-09-26 14:08:08 · 2810 阅读 · 0 评论 -
关于TensorFlow进行多GPU并行训练的一些技巧
因为TensorFlow训练时默认占用所有GPU的显存。这样如果有人想使用其他两个GPU跑程序,就会因为显存不足而无法运行。所以需要人为指定显存占用率或指定使用单张显卡。一、根据TF官网tutorial部分的Using GPUs,可以总结四种方法: 第一种是使用allow_growth,实现显存运行时分配。当allow_growth设置为True时,TF程序一开始被分配很少的...原创 2019-09-25 17:03:54 · 2031 阅读 · 0 评论 -
MNIST
Mnist**学习内容: ** **1.学习MNIST的数据解析以及softmax回归算法。 ** **2.创建一个基于图片像素识别图片数字的模型。 ** **3.使用TensorFlow来训练模型识别数字,这个学习的过程是让它去看成千上万的图片。 ** **4.使用我们的测试数据来验证模型的准确性。 ** **5.得出每次测试数据的正确率。 **简单介绍下Mnist:原创 2017-12-21 15:56:33 · 20499 阅读 · 2 评论