Latex常用高数公式

高数

【向量的夹角余弦】 cos ⁡ θ = a ⋅ b ∣ a ∣ ∣ b ∣ \cosθ=\frac{a·b}{|a||b|} cosθ=a∣∣bab
\cosθ=\frac{a·b}{|a||b|}
【导数】 x ˙ \dot x x˙ x ¨ \ddot x x¨
\dot x\ddot x
【求导】 d y d x \frac{\mathrm dy}{\mathrm dx} dxdy
\frac{\mathrm dy}{\mathrm dx}
【求偏导】 ∂ z ∂ x \frac{∂z}{∂x} xz
\frac{∂z}{∂x}
【多元函数求偏导】 f x ′ ( u , v ) = f u ′ ( u , v ) u x ′ + f v ′ ( u , v ) v x ′ f'_x(u,v)=f'_u(u,v)u'_x+f'_v(u,v)v'_x fx(u,v)=fu(u,v)ux+fv(u,v)vx
$f'_x(u,v)=f'_u(u,v)u'_x+f'_v(u,v)v'_x$
【积分号】 ∫ , ∬ , ∭ , ∮ , ∯ , ∰ \int,\iint,\iiint,\oint,\oiint,\oiiint ,,,, ,
∫,∬,∭,∮,\oiint,\oiiint
【回转体积分】 ∫ − x 0 x 0 π [ f ( x ) 2 − g ( x ) 2 ] d x ∫_{-x_0}^{x_0}π[f(x)^2-g(x)^2]\mathrm dx x0x0π[f(x)2g(x)2]dx
∫_{-x_0}^{x_0}π[f(x)^2-g(x)^2]\mathrm dx
【二重直角坐标积分】 ∬ D f ( x , y ) d y d x ∬_{D}f(x,y)\mathrm dy\mathrm dx Df(x,y)dydx
∬_{D}f(x,y)\mathrm dy\mathrm dx
【二重极坐标积分】 ∬ x 2 + y 2 ≤ R 2 f ( r , θ ) r d r d θ ∬_{x^2+y^2≤R^2}f(r,θ)r\mathrm dr\mathrm dθ x2+y2R2f(r,θ)rdrdθ
∬_{x^2+y^2≤R^2}f(r,θ)r\mathrm dr\mathrm dθ
【三重球坐标积分】 ∭ x 2 + y 2 + z 2 ≤ R 2 f ( r , φ , θ ) r 2 sin ⁡ φ d r d φ d θ ∭_{x^2+y^2+z^2≤R^2}f(r,φ,θ)r^2\sinφ\mathrm dr\mathrm dφ\mathrm dθ x2+y2+z2R2f(r,φ,θ)r2sinφdrdφdθ
∭_{x^2+y^2+z^2≤R^2}f(r,φ,θ)r^2\sinφ\mathrm dr\mathrm dφ\mathrm dθ
【方程组】 { 1 2 \left\{\begin{matrix}1\\2\end{matrix}\right. {12
\left\{\begin{matrix}1\\2\end{matrix}\right.
【求极限-幂指函数】 lim ⁡ x → ∞ ( 1 + 1 n ) n \lim_{x→∞}(1+\frac{1}{n})^n limx(1+n1)n lim ⁡ x → ∞ ( 1 + 1 n ) n \lim\limits_{x→∞}(1+\frac{1}{n})^n xlim(1+n1)n
\lim_{x→∞}(1+\frac{1}{n})^n\lim\limits_{x→∞}(1+\frac{1}{n})^n
【花体R】 R n \mathbb R^n Rn
\mathbb R^n
【散度】 d i v F = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z \mathrm{div}F=\frac{\mathrm ∂F_x}{\mathrm ∂x} +\frac{\mathrm ∂F_y}{\mathrm ∂y}+\frac{\mathrm ∂F_z}{\mathrm ∂z} divF=xFx+yFy+zFz
\mathrm{div}F=\frac{\mathrm ∂F_x}{\mathrm ∂x} +\frac{\mathrm ∂F_y}{\mathrm ∂y}+\frac{\mathrm ∂F_z}{\mathrm ∂z}
【倍角公式】 sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 , cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 \sin^2x=\frac{1-\cos2x}2,\cos^2x=\frac{1+\cos2x}2 sin2x=21cos2x,cos2x=21+cos2x
\sin^2x=\frac{1-\cos2x}2,\cos^2x=\frac{1+\cos2x}2
【和差化积公式1】 sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sinα+\sinβ=2\sin\frac{α+β}2\cos\frac{α-β}2 sinα+sinβ=2sin2α+βcos2αβ
\sinα+\sinβ=2\sin\frac{α+β}2\cos\frac{α-β}2
【和差化积公式2】 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cosα+\cosβ=2\cos\frac{α+β}2\cos\frac{α-β}2 cosα+cosβ=2cos2α+βcos2αβ
\cosα+\cosβ=2\cos\frac{α+β}2\cos\frac{α-β}2
【和差化积公式3】 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cosα-\cosβ=-2\sin\frac{α+β}2\sin\frac{α-β}2 cosαcosβ=2sin2α+βsin2αβ
\cosα-\cosβ=-2\sin\frac{α+β}2\sin\frac{α-β}2
【根号】 x 2 + y 2 \sqrt{x^2+y^2} x2+y2
\sqrt{x^2+y^2}
【幂级数和】 ∑ n = 1 ∞ ( − 1 ) n n 2 x n + 1 ∑_{n=1}^∞\frac{(-1)^n}{n^2}x^{n+1} n=1n2(1)nxn+1
∑_{n=1}^∞\frac{(-1)^n}{n^2}x^{n+1}
【圆形积分区间】 D = { ( x , y ) ∣ x 2 + y 2 ≤ 4 } D=\{(x,y)|x^2+y^2≤4\} D={(x,y)x2+y24}
D=\{(x,y)|x^2+y^2≤4\}
【泰勒展开公式】 f ( x ) = f ( x 0 ) + x f ′ ( x 0 ) + x 2 2 ! f ′ ′ x 0 ) + ⋯ = ∑ n = 0 ∞ x n n ! f ( n ) ( x 0 ) f(x)=f(x_0)+xf'(x_0)+\frac{x^2}{2!}f''x_0)+⋯=\sum_{n=0}^∞\frac{x^n}{n!}f^{(n)}(x_0) f(x)=f(x0)+xf(x0)+2!x2f′′x0)+=n=0n!xnf(n)(x0)
f(x)=f(x_0)+xf'(x_0)+\frac{x^2}{2!}f''x_0)+⋯=\sum_{n=0}^∞\frac{x^n}{n!}f^{(n)}(x_0)
【傅里叶级数】
f ( x ) = a 0 ‾ 2 + ∑ n = 1 ∞ ( a n cos ⁡ 2 π n T x + b n sin ⁡ 2 π n T x ) , { a 0 = 2 T ∫ a a + T f ( x ) d x a n = 2 T ∫ a a + T f ( x ) cos ⁡ 2 π n T x d x b n = 2 T ∫ a a + T f ( x ) sin ⁡ 2 π n T x d x f(x)=\begin{matrix}\underline{a_0}\\2\end{matrix}+∑\limits_{n=1}^∞(a_n\cos\frac{2πn}Tx+b_n\sin\frac{2πn}Tx),\\\left\{\begin{matrix}a_0=\frac2T∫\limits_a^{a+T}f(x)\mathrm dx\\a_n=\frac2T∫\limits_a^{a+T}f(x)\cos\frac{2πn}Tx\mathrm dx\\b_n=\frac2T∫\limits_a^{a+T}f(x)\sin\frac{2πn}Tx\mathrm dx\end{matrix}\right. f(x)=a02+n=1(ancosT2πnx+bnsinT2πnx), a0=T2aa+Tf(x)dxan=T2aa+Tf(x)cosT2πnxdxbn=T2aa+Tf(x)sinT2πnxdx
f(x)=\begin{matrix}\underline{a_0}\\2\end{matrix}+∑\limits_{n=1}^∞(a_n\cos\frac{2πn}Tx+b_n\sin\frac{2πn}Tx),\\\left\{\begin{matrix}a_0=\frac2T∫\limits_a^{a+T}f(x)\mathrm dx\\a_n=\frac2T∫\limits_a^{a+T}f(x)\cos\frac{2πn}Tx\mathrm dx\\b_n=\frac2T∫\limits_a^{a+T}f(x)\sin\frac{2πn}Tx\mathrm dx\end{matrix}\right.
【幂级数收敛半径】 R = lim ⁡ n → ∞ ∣ a n a n + 1 ∣ R=\lim_{n→∞}|\frac{a_n}{a_{n+1}}| R=limnan+1an
R=\lim_{n→∞}|\frac{a_n}{a_{n+1}}|
【柱坐标换元】 x = r cos ⁡ θ , y = r sin ⁡ θ x=r\cosθ,y=r\sinθ x=rcosθ,y=rsinθ
x=r\cosθ,y=r\sinθ
【球坐标换元】 x = r sin ⁡ φ cos ⁡ θ , y = r sin ⁡ φ sin ⁡ θ , z = r cos ⁡ φ x=r\sinφ\cosθ,y=r\sinφ\sinθ,z=r\cosφ x=rsinφcosθ,y=rsinφsinθ,z=rcosφ
x=r\sinφ\cosθ,y=r\sinφ\sinθ,z=r\cosφ

线性代数

【和负号一样长的空格】
\;\;\;
【右对齐】(每行开始打&为左对齐)
\begin{align} \end{align}
【二阶矩阵】 [ a 11 a 12 a 21 a 22 ] \begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} [a11a21a12a22]
\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}
【三阶矩阵】 [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] \begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix} a11a21a31a12a22a32a13a23a33
\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}
【通用矩阵】 [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ] \begin{bmatrix}a_{11}&a_{12}&⋯&a_{1n}\\a_{21}&a_{22}&⋯&a_{2n}\\⋯&⋯&⋯&⋯\\a_{n1}&a_{n2}&⋯&a_{nn}\end{bmatrix} a11a21an1a12a22an2a1na2nann
\begin{bmatrix}a_{11}&a_{12}&⋯&a_{1n}\\a_{21}&a_{22}&⋯&a_{2n}\\⋯&⋯&⋯&⋯\\a_{n1}&a_{n2}&⋯&a_{nn}\end{bmatrix}
【初等变换】 r 2 + r 1 ——— → , r 2 ↔ r 1 ——— → , r 2 × ( − 1 ) ——— → , r 2 ÷ ( − 2 ) ——— → \underset{———→}{r_2+r_1},\underset{———→}{r_2↔r_1},\underset{———→}{r_2×(-1)},\underset{———→}{r_2÷(-2)} ———r2+r1,———r2r1,———r2×(1),———r2÷(2)
\underset{———→}{r_2+r_1},\underset{———→}{r_2↔r_1},\underset{———→}{r_2×(-1)},\underset{———→}{r_2÷(-2)}
【通用向量】 a ⃗ = [ a 1 a 2 ⋯ a n ] \vec a=\begin{bmatrix}a_1\\a_2\\⋯\\a_n\end{bmatrix} a = a1a2an
\vec a=\begin{bmatrix}a_1\\a_2\\⋯\\a_n\end{bmatrix}
【逆矩阵与伴随矩阵】 A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac{A^*}{|A|} A1=AA
A^{-1}=\frac{A^*}{|A|}
【转置矩阵】 ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
(AB)^T=B^TA^T
【特征值与特征向量】 A α ⃗ = λ α ⃗ A\vecα=λ\vecα Aα =λα
A\vecα=λ\vecα

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值