机器学习笔记 - 深度学习的预处理和图像白化

这篇博客介绍了深度学习中图像预处理的重要步骤,包括方差、协方差概念,数据预处理如均值归一化、标准化和白化。文章通过实例展示了如何计算协方差矩阵,以及使用Python和Numpy进行预处理操作。最后,文章探讨了图像白化的应用,解释了ZCA白化的步骤,并展示了白化前后图像的视觉差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

        我们将使用代码(Python/Numpy 等)进行编码,以更好的理解从数据预处理的基础知识到深度学习中使用到的技术。

        将从数据科学和机器学习/深度学习中基本但非常有用的概念开始,例如方差和协方差矩阵,我们将进一步介绍一些用于将图像输入神经网络的预处理技术。使用具体代码了解每个方程的作用!

        在将原始数据输入机器学习或深度学习算法之前,我们称其为对原始数据的所有转换进行预处理。例如,在原始图像上训练卷积神经网络可能会导致较差的分类性能。预处理对于加快训练也很重要(例如,居中和缩放技术等)。

二、方差和协方差

        变量的方差描述了值的分布程度。协方差是一种衡量两个变量之间依赖程度的度量。正协方差意味着当第二个变量的值也很大时,第一个变量的值很大。负协方差意味着相反:一个变量的大值与另一个变量的小值相关联。协方差值取决于变量的规模,因此很难对其进行分析。可以使用更容易解释的相关系数。它只是标准化的协方差。

正协方差意味着一个变量的大值与
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值