1、pandas
pandas 是一个多功能且功能强大的数据科学库。
2、读取数据
pd.read_csv("data.csv") 
3、读取指定列
pd.read_csv("data.csv", usecols=["date", "price"]) 
4、读取并解析日期
pd.read_csv("data.csv", parse_dates=["date"]) 
5、读取时指定数据类型
在读取时设置类别数据类型可以节省内存。
pd.read_csv("data.csv", dtype={"house_type": "category"}) 
6、读取时设置索引
pd.read_csv("data.csv", index_col="date") 
7、设置读取的行数
pd.read_csv("data.csv", nrows=100) 
8、读取时跳过行数
pd.read_csv("data.csv", skiprows=[1, 5])  # skips line 1 and 5
pd.read_csv("data.cs
                
                      
                      
                        
                            
                            
                          
                          
                            
这篇博客详细介绍了pandas库在数据处理中的多种操作,包括读取数据、处理日期、设置数据类型、处理缺失值、数据可视化、列操作以及时间序列分析等,是Python数据科学学习的重要参考资料。
          
                  
                订阅专栏 解锁全文
                
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
                    
              
            
                  
					2336
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
					
					
					


            