数字图像处理 - 基于ubuntu20.04运行.NET6+OpenCVSharp项目

一、简述

        上一篇Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7-CSDN博客,记录了Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7的过程,最终的目的是要这些服务器上运行.net6的程序,进行图像处理、onnxruntime推理等。

        这里记录进行OpenCVSharp的安装和使用,因为使用OpenCVSharp比较简单,也不用它的DNN模块,所以也不想重新编译OpenCV,因为遇到了问题,所以记录一下这个事情。

二、安装.NET6

       为什么选择.NET6,是有历史原因的。

        如果已经安装了,可以使用 dotnet --list-sdks 和 dotnet --list-runtimes 命令查看安装的版本。

        如果源里面找不到,需要先安装微软的源,参考下面的连接。

https://learn.mic
### 准备工作 为了在Ubuntu 20.04上成功使用OpenCV 4.2、ROS Noetic以及Pangolin运行ORB_SLAM3,需确保所有依赖项已正确安装并配置。由于安装ROS的过程中已经包含了Eigen和OpenCV的安装[^1],因此重点在于确认这些库是否满足ORB_SLAM3的要求。 ### 安装必要的软件包 对于未单独安装的部分组件,如Boost库1.77.0版本,可以通过如下命令完成安装: ```bash tar -xvf boost_1_77_0.tar.gz cd ./boost_1_77_0 ./bootstrap.sh sudo ./b2 install ``` 上述过程将解压缩文件,并进入指定目录执行初始化脚本`bootstrap.sh`,最后利用`b2`工具进行编译安装操作[^4]。 ### 获取ORB_SLAM3源码 获取最新的ORB_SLAM3仓库副本以便后续编译: ```bash git clone https://github.com/UZ-SLAMLab/ORB_SLAM3.git ``` 此命令用于克隆官方GitHub上的ORB_SLAM3项目到本地环境中[^3]。 ### 编辑CMakeLists.txt以适应当前环境设置 考虑到可能出现的头文件找不到的情况(例如`opencv/cv.h`),这通常意味着路径设定不正确或是使用的OpenCV版本与预期不符。应检查项目的`CMakeLists.txt`文件,确保其指向正确的OpenCV模块位置,并且兼容所用的OpenCV版本。如果遇到类似错误,则可能需要调整代码中的包含路径或更新至支持的新API调用方式[^2]。 ### 配置Pangolin 鉴于Pangolin是可视化的重要组成部分之一,在某些场景下可能会缺少相应的`.cmake`配置文件。可以从[Pangolin GitHub页面](https://github.com/stevenlovegrove/Pangolin/archive/refs/tags/v0.6.zip)下载特定标签下的资源来解决这个问题。下载完成后按照说明文档指示完成构建流程即可。 ### 构建ORB_SLAM3 当一切准备就绪之后,可以尝试构建ORB_SLAM3工程了。先进入之前克隆下来的ORB_SLAM3根目录,创建一个新的子目录用来存放编译产物,接着运行CMake生成对应的Makefile,最后通过make指令启动实际的编译进程: ```bash mkdir build && cd build cmake .. make -j$(nproc) ``` 这里假设读者具备基本Linux shell技能;其中`-j$(nproc)`参数可以让编译器充分利用多核处理器加速整个过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值