UNSUPERVISED NEURAL MACHINE TRANSLATION
1. translation是基于word embedding。embedding的时候分别train两个language embedding。用一个小的配好对的字典(seed dictionary)做mapping,去找到两个language相对应的words,在这个过程中得到一个关于对应关系的线性函数来对应两个language embedding里面其他所有的词。相当于seed dictionary里面的是ground truth,通过ground truth来找对应关系,来对应其他不知道怎么对应的词。这一部分其实是另一篇paper讲cross-lingual word embedding的,一会就看!
2. 这篇文章侧重讲的是unsupervised translation。在得到两个language word-embedding之后,去做unsupervised training。文章里说主要用到denoising和on-the-fly backtranslation两个步骤,但我觉得看懂back translation就能懂为什么叫unsupervised了。比如用language L1里面的一句S1翻译成language L2里面对应意思的句子S2。在training过程中,S1随便被翻译成S2',但不告诉系统真正的S2是什么,而是再用得到的S2'去翻译回L1语言里面对应的S1'。通过比较S1和S1'的不同来更新参数,来达到训练效果。我觉得**unsupervised**指的就是中间翻译成的S1'的那步,**backtranslation**指的应该就是从S2'翻译回S1'那步。
3. 顺便记一下denoising。就是人为添加的noise,通过减小语序对翻译结果的影响,从而提高翻译质量。denoising就是随机打乱(交换)S1里面一般的词的顺序。