自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(60)
  • 收藏
  • 关注

原创 关于Dlib库疲劳检测实战:从原理到代码实现

通过眼睛的纵横比来判断眼睛是否闭合。从而判断人是否处于疲劳状态。疲劳检测可以用于多种场景,其中最常见的就是检测司机长时间开车状态。

2025-05-24 20:02:28 767

原创 Dlib 表情识别实战:从原理到代码实现​

在人工智能的浪潮下,计算机视觉领域的表情识别技术备受关注。它不仅可以应用于人机交互、情感分析等领域,还在教育、医疗等行业展现出巨大潜力。而 Dlib 作为一个强大的机器学习工具包,为表情识别提供了高效便捷的解决方案。本文将深入探讨 Dlib 表情识别的原理,并通过代码实战,带你掌握 Dlib 表情识别的具体应用。Dlib 是一个包含机器学习算法和工具的开源软件库,由 Davis E. King 开发。它提供了丰富的功能,涵盖图像处理、机器学习、人脸识别、目标检测等多个领域。

2025-05-24 19:50:57 987

原创 使用dlib库进行轮廓绘制

dlib 库的轮廓绘制功能,主要基于其强大的图像处理和机器学习算法。在进行轮廓绘制前,往往需要先通过相关算法对图像中的目标物体进行检测和定位,确定目标区域。之后,dlib 会根据目标物体在图像中的像素分布和特征,准确提取出边界信息,进而实现轮廓绘制。在Dlib中,人脸识别的轮廓绘制是指通过检测人脸的关键点位置,使用直线或曲线连接这些关键点,从而绘制出人脸的轮廓线条。这些关键点通常包括眉毛、眼睛、鼻子、嘴巴等部位的位置。通过绘制人脸轮廓,可以对人脸进行更精确的分析和识别。

2025-05-23 18:20:03 690

原创 使用dlib库进行关键点定位及案例解析

dlib 的优势显著。首先,它具有高度的易用性,即使是没有深厚 C++ 基础的开发者,通过 Python 接口也能轻松上手。其次,dlib 的算法经过了大量的优化,在保证高精度的同时,检测速度也非常快,能够满足实时性要求较高的应用场景。此外,dlib 还支持跨平台运行,无论是 Windows、Linux 还是 macOS 系统,都可以顺利部署使用。关键点定位是指在人脸图像中自动定位人脸的关键点,如眼睛、鼻子、嘴巴等特征点。

2025-05-23 18:06:23 682

原创 dlib库的人脸检测案例实现

dlib 是一个包含机器学习算法和工具的跨平台 C++ 库,同时也提供了 Python 接口,方便开发者使用。它涵盖了图像操作、机器学习、数据挖掘等多个领域的功能。在人脸检测方面,dlib 内置了基于 HOG(Histogram of Oriented Gradients,方向梯度直方图)和级联分类器的检测器,以及更为先进的基于深度学习的 CNN(Convolutional Neural Network,卷积神经网络)检测器。

2025-05-22 20:40:17 663

原创 YOLOv3模型原理解析

YOLO v3 通过多尺度检测(利用 FPN 结构在 13×13、26×26、52×52 三个特征图上分别检测大、中、小目标,每个尺度 3 种锚框共 9 种)、更强的 Darknet-53 骨干网络(53 层卷积 + 残差连接)、多标签分类(二元逻辑回归替代 softmax)、灵活输入尺寸(默认 416×416)以及优化的损失函数(边界框回归用 MSE,类别和置信度用二元交叉熵),显著提升了多尺度目标检测能力,在 COCO 数据集上 mAP@0.5 达 57.9%,兼顾精度与实时性(22ms / 帧,30

2025-05-22 20:15:28 925

原创 OpenCV人脸识别FisherFaces 算法:从原理到代码

在人脸识别领域,FisherFaces 算法凭借有监督学习的优势,成为经典的判别式方法之一。FisherFaces 算法是传统人脸识别中 “判别式学习” 的代表,通过引入标签信息弥补了 PCA 的无监督缺陷。尽管在复杂场景下逐渐被深度学习取代,但其简洁的数学原理和轻量的实现方式,依然是理解人脸识别核心逻辑的重要切入点。

2025-05-15 21:24:59 887

原创 OpenCV人脸识别EigenFace算法、案例解析

在人脸识别领域,EigenFace 算法凭借主成分分析(PCA)的数学魅力,用简洁的逻辑实现高效的人脸特征提取。本文不仅深入剖析其原理,更通过 Python 代码带大家从 0 到 1 搭建 EigenFace 人脸识别系统。EigenFace 作为经典算法,用数学之美打开了人脸识别的大门。尽管在复杂场景下深度学习更具优势,但在嵌入式设备、小型门禁等对资源敏感的场景中,EigenFace 依然不可或缺。后续博客将深入探讨 EigenFace 与深度学习的融合方案,以及在工业质检、医疗影像等领域的创新应用。

2025-05-15 21:11:35 958

原创 OpenCV人脸识别LBPH算法原理、案例解析

本文详细介绍基于 OpenCV 的 LBPH(Local Binary Patterns Histograms)人脸识别算法原理与实战流程,包含数据集准备、模型训练、实时识别等关键步骤,并提供完整 Python 代码示例,适合入门级开发者快速掌握传统人脸识别技术。LBPH(Local Binary Patterns Histogram,局部二值模式直方图)算法使用的模型基于LBP(Local Binary Pattern,局部二值模式)算法。

2025-05-14 22:32:04 1071

原创 OpenCV进阶操作:人脸检测、微笑检测

要实现人脸识别首先要判断当前图像中是否出现了人脸,这就是人脸检测。只有检测到图像中出现了人脸,才能据此判断这个人到底是谁。尽管传统Haar级联在复杂场景下存在局限,但其高效性仍使其成为许多实时系统的首选。对于更高精度的需求,可以结合深度学习模型(如MTCNN、RetinaFace)进一步提升效果。

2025-05-14 14:52:15 1424

原创 OpenCV代码实现摄像头风格迁移

在社交媒体滤镜风靡全球的今天,那些实时变化的梵高星空滤镜或二次元动漫特效背后,究竟隐藏着怎样的技术魔法?摄像头风格迁移(Real-time Camera Style Transfer)正在重新定义我们与数字世界的互动方式。当4K/120fps成为新常态,风格迁移技术正在突破艺术与现实的次元壁。从手机镜头到电影工业,从医疗影像到元宇宙构建,这项技术正在书写人机交互的新篇章。

2025-05-13 22:47:11 596

原创 OpenCV进阶操作:风格迁移以及DNN模块解析

风格迁移(Style Transfer)是计算机视觉领域的一项突破性技术,它通过算法将一幅图像的内容与另一幅图像的艺术风格相结合。这项技术自2015年Gatys等人提出神经网络风格迁移算法以来,在艺术创作、图像处理和移动应用开发等领域获得了广泛应用。DNN模块是 OpenCV 中专门用来实现 DNN(Deep Neural Networks,深度神经网络) 模块的相关功能,其作用是载入别的深度学习框架(如 TensorFlow、Caffe、Torch 等)中已经训练好的模型,然后用该模型完成预测等工作。

2025-05-13 22:04:47 1139 1

原创 OpenCV进阶操作:光流估计

光流(Optical Flow)是计算机视觉中用于描述图像序列中物体运动模式的核心技术。从视频稳定到自动驾驶,从动作识别到增强现实,光流估计在动态场景分析中扮演着关键角色。OpenCV提供了多种光流算法实现,本文将深入解析其原理与实践方法。OpenCV的光流工具为运动分析提供了强大支持,稀疏光流适合实时跟踪,稠密光流适合精细分析参数调优需在精度与效率之间取得平衡结合传统图像处理与深度学习可获得更鲁棒的结果。

2025-05-12 20:46:09 1152

原创 OpenCV进阶操作:背景建模原理、案例解析

在计算机视觉领域,背景建模(Background Modeling)是视频分析任务(如运动检测、目标跟踪)的核心技术之一。通过分离视频中的前景(运动物体)和背景(静态场景),我们可以有效识别和跟踪目标对象。OpenCV提供了多种背景建模算法,本文将介绍其原理及实践方法。指在计算机视觉中,从视频序列中提取出静态背景的一种技术。在视频中,背景通常被定义为相对稳定的部分,例如墙壁、地面或天空等。背景建模的目标是将动态的前景对象与静态的背景进行分离,以便进一步分析和处理。

2025-05-12 20:19:31 930

原创 OpenCV进阶操作:指纹验证、识别

指纹识别作为生物识别领域的核心技术之一,凭借其唯一性、稳定性和易采集性,在安全认证、刑事侦查、智能设备解锁等领域得到广泛应用。然而,指纹图像的高噪声、低对比度以及复杂纹路结构等特点,使得特征提取与匹配成为技术难点。OpenCV作为开源计算机视觉库,虽提供了丰富的图像处理工具(如SIFT、SURF等特征检测算法),但在实际应用中仍需结合预处理和优化策略以提升识别精度。在OpenCV中,指纹验证是一种图像处理技术,用于识别和验证人类指纹。指纹是一种独特的生物特征,每个人的指纹都具有独特的纹路和图案。

2025-05-11 22:51:53 3521 6

原创 YOLOv2框架深度解析

YOLOv2(You Only Look Once, Version 2)是目标检测领域的重要模型,由Joseph Redmon等人在2016年提出。它在YOLOv1的基础上进行了多项改进,显著提升了检测精度和速度,同时保持了实时性。YOLOv2通过引入Anchor Box、多尺度训练、Darknet-19等关键技术,在速度和精度之间取得了更好的平衡。尽管后续版本(如YOLOv3、YOLOv4)进一步优化,YOLOv2仍是理解YOLO系列演进的重要里程碑。

2025-05-11 22:28:16 1045

原创 YOLOv1模型架构、损失值、NMS极大值抑制

YOLOv1(You Only Look Once: Unified, Real-Time Object Detection)由Joseph Redmon等人在2016年提出,是YOLO系列的第一代模型,首次将目标检测任务转化为单阶段端到端的回归问题,实现了实时检测的突破性进展。YOLO V1存在的优缺点:优点:速度快,简单缺点1:每个cell只预测1个类别,如果重叠无法解决缺点2:小物体检测效果一般,长宽比可选,但单一。

2025-05-09 21:43:54 1100

原创 YOLO算法的基本介绍

YOLO(You Only Look Once)是一种基于深度学习的实时目标检测算法,其核心思想是将目标检测任务转化为单次全局推理问题,直接在图像上预测物体的边界框和类别。与传统的两阶段检测方法(如Faster R-CNN)相比,YOLO以更快的速度和较高的精度成为工业界和学术界的热门选择。YOLO目标检测算法,由Joseph Redmon等人于2016年提出。它是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。

2025-05-09 18:31:57 2216

原创 Opencv进阶操作:图像拼接

在数字图像处理领域,图像拼接(Image Stitching)是一项将多张重叠图像无缝合成广角视图的关键技术。这项技术被广泛应用于全景照片生成、卫星地图制作、医学影像分析等领域。本文将使用OpenCV库,结合Python示例代码,深入解析图像拼接的核心实现流程。图像拼接的本质是通过特征匹配建立图像间的几何对应关系,利用投影变换对齐视角,最后通过融合技术消除拼接痕迹。其核心原理结合了特征匹配、几何变换和图像融合三大技术模块,是计算机视觉领域的基础应用之一。

2025-05-08 17:15:53 1431

原创 OpenCV进阶操作:图像的透视变换

在图像处理中,透视变换(Perspective Transformation) 是一种强大的技术,能够校正因视角倾斜导致的图像变形。无论是扫描文档的自动矫正、车牌识别,还是增强现实(AR)中的虚拟物体叠加,透视变换都扮演着重要角色。本文将通过OpenCV库,手把手教你掌握透视变换的核心原理与代码实现。透视变换是一种将图像从任意视角投影到新视角的几何变换。与仅能处理平移、旋转和缩放的仿射变换不同,透视变换可以处理三维视角变化,彻底改变图像的投影关系,实现“视角拉正”的效果。核心特点。

2025-05-08 15:30:42 1422

原创 OpenCV进阶操作:SIFT特征提取

特征提取是指从原始数据中提取出具有辨识性和代表性的特征,用于描述和表示数据的关键信息。在计算机视觉、模式识别和机器学习等领域,特征提取是一项关键的任务,因为原始数据通常含有大量冗余和噪声,通过提取特征可以减少数据的维度、去除冗余信息,从而更好地捕捉数据的潜在模式和结构。特征可以是数据的某种可测量的属性,比如颜色、纹理、形状、梯度等。特征提取的目标是选择和计算这些特征,使其能够表达出不同类别或实例之间的差异和相似性。

2025-05-06 22:35:37 915

原创 OpenCV进阶操作:角点检测

在计算机视觉中,角点检测是识别图像中局部区域(角点)的关键技术,这些区域通常是两条或多条边缘的交点,具有丰富的结构信息,常用于图像匹配、跟踪、三维重建等任务。Harris角点检测算法是一种常用的计算机视觉算法,用于检测图像中的角点。该算法通过计算图像中每个像素的局部自相关矩阵,来判断该像素是否为角点。角点检测是计算机视觉中的一种特征检测方法,用于寻找图像中的角点或者具有角点特征的图像区域。角点是指图像中突然改变方向的点,即在其周围的不同方向上都有较大的灰度变化。

2025-05-06 22:20:50 1227 1

原创 OpenCV进阶操作:图像直方图、直方图均衡化

传统的直方图均衡化方法是将整个图像的直方图变成均匀分布,但在某些情况下,图像的局部区域可能存在过亮或过暗的问题。在图像直方图中,横轴表示像素值的范围,通常为0-255,纵轴表示像素值的数量或频率。例如,柱子的高度表示图像中具有该像素值的像素的数量或出现的频率。通过直方图可以了解图像中不同亮度值的像素数量,从而判断图像的亮度分布情况。直方图均衡化:直方图均衡化是一种图像增强技术,它可以通过增加图像的对比度和亮度来改善图像的质量。例如,如果红色通道的直方图偏向左侧,则说明图像偏向较暗的红色,存在亮度偏移。

2025-05-05 21:32:36 1224

原创 OpenCV进阶操作:图像掩模

通过将掩码图像与原图像进行逐像素逻辑运算,可以实现对特定区域进行掩模(遮罩),只对感兴趣的区域进行处理,而不影响其他区域。掩码图像在图像分割、图像修复、图像特征提取等图像处理任务中很常见,它可以用来指定感兴趣的区域,从而在处理过程中对特定区域进行操作或分析。

2025-05-05 21:07:29 914

原创 OpenCV进阶操作:图像金字塔

在计算机视觉领域,图像金字塔是一种重要的多尺度表示方法。通过构建图像金字塔,我们可以高效地处理不同分辨率下的图像特征。OpenCV作为最流行的计算机视觉库,提供了便捷的图像金字塔实现方法。本文将深入解析图像金字塔的原理,并通过Python代码演示其实际应用图像金字塔是通过对原始图像进行多尺度**下采样(缩小)和上采样(放大)**得到的图像集合。其名称来源于金字塔状的分层结构,每一层都是对前一层分辨率按比例缩放的结果。这种结构可以帮助我们在不同尺度下分析图像特征,常用于目标检测、图像融合等任务。

2025-04-27 23:14:28 1260

原创 深度学习--循环神经网络RNN

循环神经网络(RNN)的起源可以追溯到1982年,由Saratha Sathasivam提出的霍普菲尔德网络(Hopfield network)。然而,早期的RNN结构相对简单,且在实际应用中受到了一定的限制。随着深度学习技术的不断发展,RNN模型在结构和性能上得到了显著的改进,成为处理序列数据的强大工具。循环神经网络)是一种用于处理序列数据的神经网络架构。其在处理序列输入时具有记忆性,可以保留之前输入的信息并继续作为后续输入的一部分进行计算。

2025-04-25 22:23:29 1418

原创 深度学习--自然语言处理统计语言与神经语言模型

传统的语言模型是基于词袋模型(Bag-of-Words)和one-hot编码展开工作的,即在传统的语言模型中要生成一个句子,其实是拿一堆词语进行拼凑,拼凑出一个句子后我们需要有一个评委来对这个机器生成的句子进行打分和评价,语言模型就是这么一位评委,它会给每个句子打出一个概率值,以表明他们与人类语言的接近程度。

2025-04-25 21:06:48 1635

原创 机器学习:数据预处理、数据清洗

数据清洗是数据治理过程中非常重要的一环,它指的是对数据进行清理、筛选、去重、格式化等操作,以确保数据质量和数据准确性。。在本文中,我们将围绕数据清洗展开讨论,并介绍一些数据清洗相关技术。总之,数据清洗是数据治理不可或缺的一环,它对于数据质量和准确性有着至关重要的影响。在实践中,数据清洗需要根据具体的数据集和业务需求进行调整和优化,以满足不同的数据处理和分析要求。因此,数据清洗需要进行不断的优化和改进,以适应不断变化的数据和业务环境。

2025-04-24 21:44:44 524

原创 Opencv图像处理:旋转、打包、多图像匹配

1)顺时针旋转90度2)逆时针旋转90度2、使用opencv的方法实现图像旋转1)顺时针旋转90度2)逆时针旋转90度3)旋转180度3、效果2)定义find_temp函数3)进行模板匹配三、打包与np.where()函数1、np.where()函数1)作为条件选择器np.where(condition, x=None, y=None)2)作为条件索引获取器(省略 x 和 y)np.where(condition)2、打包与解包1)打包2)解包zip(

2025-04-24 21:13:05 1052

原创 深度学习--ResNet残差神经网络解析

在ResNet之前,VGG、AlexNet等模型通过增加网络深度提升性能,但人们发现:当网络层数超过20层后,模型的训练误差和测试误差反而会不降反升。这一现象被称为“网络退化”(Degradation),并非由过拟合导致,而是因为深层网络难以优化。2015年,微软研究院的何恺明团队提出了ResNet(Residual NeuralNetwork),这一模型以3.57%的Top-5错误率首次在ImageNet图像识别竞赛中超越人类水平,并成为深度学习历史上的里程碑。

2025-04-23 22:18:19 1375

原创 深度学习--卷积神经网络调整学习率

在深度学习中,学习率(Learning Rate) 是优化算法中最重要的超参数之一。对于卷积神经网络(CNN)而言,合理的学习率调整策略直接影响模型的收敛速度、训练稳定性和最终性能。本文将系统性地介绍CNN训练中常用的学习率调整方法,并结合PyTorch代码示例和实践经验,帮助读者掌握这一关键技巧。常用的学习率有0.1、0.01以及0.001等,学习率越大则权重更新越快。一般来说,我们希望在训练初期学习率大一些,使得网络收敛迅速,在训练后期学习率小一些,使得网络更好的收敛到最优解。使用库函数进行调整。

2025-04-23 20:49:32 1055

原创 深度学习--卷积神经网络保存最优模型

在深度学习项目中,特别是在使用卷积神经网络(CNN)处理计算机视觉任务时,模型保存策略是影响最终效果的关键因素。保存最优模型指的是在训练过程中,根据某个指标(如验证集准确率或损失函数值)的表现,选择最好的模型参数并将其保存下来,然后形成一个文件,后缀名为pt\ppt\t7在深度学习中,模型的训练过程通常是通过迭代优化算法(如梯度下降)来不断调整模型的参数,以最小化目标函数(如损失函数)。在每个训练周期结束后,会使用验证集或测试集对模型进行评估,计算模型在该指标上的性能。

2025-04-22 21:33:23 910

原创 深度学习--卷积神经网络数据增强

*数据增强(Data Augmentation):**缓解深度学习中数据不足的场景,在图像领域首先得到广泛使用,进而延伸到 NLP 领域,并在许多任务上取得效果。一个主要的方向是增加训练数据的多样性,从而提高模型泛化能力。本文将深入探讨数据增强的原理、常用方法及其在CNN中的应用实践。数据增强是CNN训练中简单却高效的“免费午餐”,通过模拟真实世界的数据多样性,显著提升模型的泛化能力。随着AutoML技术的发展,自动化、自适应增强策略正成为新的趋势。

2025-04-22 20:47:48 1448 4

原创 Opencv图像处理:模板匹配对象

模板匹配是OpenCV中的一种图像处理技术,用于在一幅图像中查找与给定模板或样本图像最相似的区域。

2025-04-20 22:04:48 1642

原创 Opencv图像处理:轮廓检测、轮廓近似、绘制外接圆外接矩形

指对轮廓进行逼近或拟合,得到近似的轮廓。在图像处理中,轮廓表示了图像中物体的边界,因此轮廓近似可以用来描述和识别物体的形状。

2025-04-20 15:51:53 874

原创 深度学习--mnist数据集实现卷积神经网络的手写数字识别

卷积神经网络是一种深度学习模型,主要应用于图像和视频处理任务。它的设计灵感来源于生物视觉系统的工作原理。def __init__(self):#输入大小(1,28,28)super(CNN,self).__init__()#初始化父类self.conv1 = nn.Sequential(#将多个层组合到一起,创建了一个容器nn.Conv2d(stride=1,padding=1,),nn.ReLU(),

2025-04-19 16:37:23 981

原创 深度学习--卷积神经网络CNN原理

对图像(不同的数据窗口数据)和卷积核(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的【卷积】操作,也是卷积神经网络的名字来源。首先,将这个卷积核顺序对应图片的每一个位置,将然后使其进行点乘,将相乘的结果求和得到一个值即为卷积后图片的像素点的像素值,最终内积完得到一个结果叫特征图。

2025-04-19 15:56:42 1270

原创 深度学习--深度学习概念、框架以及构造

深度学习是人工智能的一个子领域,属于机器学习的一部分,它基于人工神经网络的概念和结构,通过模拟人脑的工作方式来进行机器学习。

2025-04-15 13:08:20 904

原创 OpenCV摄像头人脸识别

人脸识别是计算机视觉领域最受欢迎的应用之一,广泛应用于安防监控、智能门禁、互动娱乐等场景。本文将通过Python和OpenCV库,实现一个简单的实时摄像头人脸识别程序。""" 向图片中添加中文 """if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 实现array到image的转换。

2025-04-03 16:34:42 786

原创 OpenCV人脸识别:从原理到实践

在计算机视觉领域,人脸识别技术一直是最受关注的应用之一。从手机解锁到机场安检,从社交平台自动标记到智能安防系统,这项技术正在深刻改变我们的生活。作为开源计算机视觉库的标杆,OpenCV为人脸识别提供了强大的工具支持。本文将带您深入浅出地了解OpenCV人脸识别的实现原理,并通过完整代码示例演示实际应用。通过OpenCV实现人脸识别既充满挑战又富有乐趣。随着OpenCV 4.x版本的持续更新,对深度学习模型的整合更加完善,开发者可以轻松构建从简单到复杂的人脸识别系统。

2025-04-01 21:54:20 1118

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除